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A new approach to a unified field theory combining Einstein’s gravitational equations and the Maxwell
equations is developed using a geometry in which GL(4, C) replaces GL(4, R) as the group of the prin-
cipal bundle. The resulting equations are the same as Einstein’s in the case of empty space but differ
from those he proposed for the combined gravitational and electromagnetic fields. Charge is shown to
appear only at singularities, and a symmetric solution corresponding to the classical Schwarzschild metric

is presented.

1. INTRODUCTION

OON after the introduction of general relativity by
Einstein in 1915, Weyl*? attempted to develop a
geometry which would provide not only a theory of
gravitation but also of electromagnetic phenomena.
The basis of his idea was to allow the length scale to
vary from point to point in space; this could be
described in terms of a differential form ¢, dx® and the
¢, would then be the electromagnetic potentials.
Although this theory had certain attractive features,?
it had to be abandoned because of several deficiencies.
Other attempts at a unified theory followed, notably
the “already unified” theory of Rainich, Misner, and
Wheeler, and Einstein’s later theories based on a
nonsymmetric metric tensor. The lack of any experi-
mental results to indicate an effect on gravitation
caused by electromagnetic events has left the question
wide open. .
The advent of quantum theory pushed these specu-
lations out of the main stream of physics for several
reasons. One was the fact that the physical scale of the

1 H, Weyl, Gravitation und Elektrizitdr (Sitzber. Preuss. Akad.
Wiss., Berlin, 1918), pp. 465-480.

2 H. Weyl, Space, Time, Matter (Dover Publications, Inc., New
York, 1950).

3 R. Adler, M. Bazin, and M. Schiffer, Introduction to General
Relativity (McGraw-Hill Book Gompany, Inc., New York, 1965).

phenomena was completely different. For all practical
purposes gravitation could be ignored in questions of
quantum theory. Seemingly, the Lorentz—Minkowski
geometry of special relativity was adequate to describe
the geometry, at least at a certain level of abstraction.
Another reason, of course, was again the sparse nature
of experimental results in general relativity and the
complete lack of any results connecting gravitation
and quantum phenomena.

However, the problem of the geometry of the
physical world “in the small” may be at the heart of
even quantum theory. For one thing, it is recognized
that the uncertainty principle calls into question the
concept of manifold itself since it raises doubts as to
the physical meaning of a point in space-time. For
another, it can be argued that behind the skepticism
as to the validity of quantum theory, prevalent since
the inception of the theory, there lurks the rejection
of a physical theory that is so nongeometric.

It would seem then that the geometry of the physical
world is still very much an open question and that
there is at least the possibility of shedding light not
only on the relation of gravitation and electromagnet-
ism but even on the foundations of quantum theory.
This paper does not solve these problems. What has
been done is to introduce a new geometry which is

983
Copyright € 1967 by the American Institute of Physics



984

clearly a variation on Weyl’s ideas and which does
yield an equation relating gravitation to electro-
magnetism which is different from Einstein’s. The
geometry has features reminiscent of the formalism
of quantum theory, although we have not as yet been
able to show a direct link. In particular, the geometry
has the same type of gauge invariance as quantum
electrodynamics, and it is GL(4,-C) rather than
GL(4, R) that is the Lie group of the fiber bundle over
the manifold.
2. GEOMETRY

We first describe the formalism of the geometry in
heuristic terms and from this derive an expression
for the connection coefficients and demonstrate the
gauge invariance properties. This is followed by a
brief indication of how the geometry can be fitted into
the modern theory of differential geometry via the
theory of fiber bundles.

Instead of a change in the metric scale from point
to point of a four-dimensional manifold, as introduced
by Weyl, we think of length measurement as having
a phase associated with it that varies from point to
point. Assume that there is a nondegenerate tensor
field g,; which plays, in a modified way, the role of the
metric tensor. The components of a vector &’ are
allowed to be complex numbers. For the moment we
do not specify the real or complex nature of g;;.
Using the Einstein summation convention, the square
of the “length” of a vector 2 = g, £7&* need no longer
be a real number but we can write g, £/6* = |/|? 2%,
where ¢ is then the phase associated with the length
of the vector &7, To develop an appropriate connection
assume that under parallel displacement the length
[/l of &% does not change but the phase changes by
dé = ¢, dx’, where ¢, is a real vector and dx’ repre-
sents a small displacement of position. If / = [/] ¢*®
then under the displacement dx’, / changes by dl =
i|l| e d = ild, dx’. Defining T'i; by d&* = T'i dx’E¥,
where d&* is the change in the component & under
the displacement dx’, we get

AP = d(g, ') = 21 dI = 2il*$,, dx™
= 2igyt'th, dx”
= Zuimé '€ dx™ + gyl dx"ENE"
+ gl hmé'E" dx™. 1)
Here and below g, = 0g,,/0x™.

Equations (1) can be solved as in Ref. 3, p. 49, to
yield

T = ":jlk-} + ig™[gmiPr + EmPi — Cabml (2

where {]Ik} is the usual Christoffel symbol of the
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second kind defined as a function of g;; by

i i
{jk‘} = 3g"(gup + Zrus — i)
For convenience write

Fg‘k = Pj‘k + iI:“;'k’ 3

i __l
Me=—{

f"ak = gmi(gmi¢k + ZPi — EPm)-

It should be clearly noted, however, that this will
be the decomposition of I, into real and imaginary
parts if all g,; are real but otherwise need not be.
Observe also that I', is invariant under the simulta-
neous gauge transformations

where

and

ix —> ga‘keziw e — b + Vi 4

where y is an arbitrary differentiable function on the
manifold. Since this type of invariance is of basic
interest, it is clear that we cannot assume that g, is
always real. We can either allow g, to be complex or
restrict the solutions of the equations developed below
by requiring that there always be a choice of gauge
function y such that g;e*¥ is real. Some special
results are developed using this assumption. At present
there is no interpretation available for solutions for
which there is no such gauge function.

In order to put the above discussion into the frame-
work of current mathematics we turn to the theory of
fiber bundles. The notation and terminology is mainly
that of Ref. 4, particularly pp. 50ff. and pp. 140ff. The
entire base manifold, and therefore the bundle, cannot
be described since the topology in the large is unknown.
What can be done is to give the bundle, connection,
and metric in some coordinate neighborhood and
then take the whole bundle to be some extension. In
a later section a solution in the large is given and
this can be taken as an existence theorem.

The base manifold is then U, assumed diffeomorphic
to an open subset of R*; U may also be assumed to
be a coordinate neighborhood. The Lie group is
GL(4, C), the nonsingular 4 x 4 matrices with com-
plex entries. Let X;, X;, X;, and X, be a basis for
T,(U), the tangent space at x € U. The collection of all
quadruples (c{X;, - -, cjX,) where (c}) € GL(4, C) is
called the space of complex frames at x. LS(U) is the
set of all complex frames at all points of U. GL4, C)
acts on L°(U) on the right in an obvious manner: If
(x; Yp,°+, Y =ueL(U)and(c}) = ce GL4, C),

4S. Kobayashi and K. Nomizu, Foundations of Differential
Geometry (John Wiley & Sons, Inc., New York, 1963).
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then uc is (x;c}Y,, -+, ci¥,). Define n(u) = x if u
is a complex frame at x. It is clear that GL{4, C) acts
freely on L°(U). If x*, x%, x3, x*, are coordinates in U
then every complex frame is of the form

i 0 40
(cl oxt’ é ax")
#~Xx) is then in one-te-one correspondence with
GL(4,C) and coordinates are introduced in the
obvious way so-that LYUXU, GL{4, C)) becomes a
principal fiber bundle.

The complex tangent bundle E = T°(U) can also
be defined to be the bundle associated with L°(U) with
standard fiber C% Then = 3}(x) is isomorphic with C*
and in terms of coordinates x}, x2, x3, x% in U, is
represented as the set of all ¢'9/dx’, where {c'},
i=1,---,4, are complex numbers. These are the
“complex vectors” referred to above. If u € L°(U) then
u can be considered in the usual way as an isomor-
phism of C* on #}(x) if x = =(u). In our case if
u=(x;ciX;," ,ciX,) and &= (&, -, et
then u¢ = &ciX,.

A connection form o can now be described in
Le(U). If Ef is the matrix with 1 in the (7, j) position
and zero elsewhere then {E}, ;_, ... , form a basis for
gl(4, C), the Lie algebra of GL(4,C). If we set
o = wiE} and

ol = YdX* —

we have a connection form in L(U). Here T}, is given
by (2), (x*, X*) are the coordinates in LY(U), and Y}
is the matrix inverse to X*. The complete discussion
for the real case is found in Ref. 4, pp. 140ff.; only
formal changes are necessary in the complex case. Our
choice of I'}, differs from that in Ref. 4 by a negative
sign, correspondmg (in the case ¢, = 0) to the notation
in Ref. 3.

I X! dx™)

3. CURVATURE TENSOR AND FIELD
EQUATIONS

Having obtained the I'},, the curvature tensor R},
could be computed according to the formula
R =
Writ?ng Ri,,
obtains

"‘Fik;z + Fﬂlk + sz F’ §’2 (5)
=R, + me, and putting in (3) one

Rjkz = “Pﬂcu + Pillk + lepalc 7; o
- F:nz ik + F:nk ;,;9
—Th + fﬁzyx + I e 4 T2 o ik
- P:nic— - Pink m~

i
R =
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S.ince Ry = Ri, = R, + iR, is desired, contraction
gives
R;=R, - ler + F:m B ©)
Ru = ""sz + Pﬂlt + P:nlr + 1, p
— T Fp T rm

where R;, is the contracted curvature tensor obtained
by using only the classical metric connection corre-

sponding to '\, = ——{;k}. That is, R, = R;; in the

special case ¢, = 0.
A simple computation shows that

R, = I%n — 2g;9'b; + 2,4, ®

The computation of 1‘5,, is longer so an outline
of the results is given for the convenience of the reader.

ﬁj‘m = 4¢ifl’ (%)
e = dus + 0 — (€294 (9b)

i F'" = =i " + Em®™ — 18" Bimpdbs» (96)
F' 7= = &mp®™ + Baim®™ — 38 Cempsb>  (9d)

P:nirﬂ = —‘E(Qchkmg:cmu
+ 358" 8emis — 8P 8 " Zem),  (9€)
P:m = "Zﬁf’mgmgz - 295mgzmu + 2§5m85zlm° (9_f)
Putting these in (7) yields
R, = =35 + bus = (€19 im + "G ims
+ 8"gimn — 16218 "Gemie-  (10)

This can be further simplified. Note that we have
"‘{; } Let || desig-

nate the covariant derivative based on I', and |
designate that based on T, . With this notation

two connections .I', and T, =

Ru = 4’:1;5 - 3¢5;;z - gu?s;'{‘k (1n
Observe that since I'l, = I'; |
‘}Szu - 95;;: = ‘ﬁzn; - ‘f’fnz = ¢l|||f - ‘}bﬂnz-
From (8) and (11) it follows that
Ry = Ry + iR, = [R;; — 28,4, + 24,
+ iy — 3 — gadl] (12

Since I', is invariant under the gauge transforma-
tion (4), so is R, and R;;. Of course, R, and R}, are
not separately invariant.

- Once (12) is obtained it is tempting to take (by
analogy with the classical case) R;;, = 0 for the field
equations. However, it is easily seen that in this case
R;, is not a symmetric tensor so that R,;; = 0 would
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imply that both the symmetric and antisymmetric
parts are zero. The antisymmetric part is

¥R, — Ry = 2i{¢zui - ¢1||z}-

On the other hand, we wish to take ¢, as the vector
potential of the electromagnetic field, in which case
the electromagnetic 4-tensor is Fy; = ¢, ; — ¢y
except for a constant multiplier. Therefore, demanding
that the antisymmetric part of R;; vanish would also
require having zero electromagnetic field. This problem
can be avoided if we observe that ¢,; — é,, =
‘$y; — &,; is gauge invariant so that

R, = 2i{¢z||5 - 9551”} (13)

is a set of gauge invariant field equations. This is
equivalent to requiring that only the symmetric part
of R,, be zero. Another gauge invariant quantity
which could possibly be added to the right side of
(13) is Ag;,R, where A is a constant and R = giR;;.
‘Exactly as in the classical case, however, the classes
of solutions of (13) and

Rj, = 2i{dy; — by} + AgaR (14)

are exactly the same except if A = }, in which case the
class of solutions of (14) contains those of (13) as a
subset.

R can be computed from (12). Since ¢,; is the
covariant derivative of ¢, with respect to the metric
connection I, it follows as usual that ¢;,g% = #¥,
since gi* = 0. Therefore

R = R — 6¢"¢, — 6idh, = 0, (15)

the last equation being a consequence of (13). From
(13), (14), and (15), with 4 = } in (14), it follows that

Ry — 3gaR + gudid: + 26,9,
— by + Sy; ~ 28:9);, = 0. (16)

Suppose for the moment there is a real gauge, i.e.,
a gauge in which all g;; are real. Then (15) implies
R = 6¢%$, and #f, = 0. Equation (16) then becomes
the pair of equations

Rn - %g”f{ + gud'd; + 26,6, =0,
Ga + bys =0.

The last is nothing but the Killing equation and is
equivalent to the statement that if a coordinate system
is chosen so that ¢/ = (1, 0, 0, 0) then g;, is independ-
ent of the first coordinate. In this gauge ¢, has the
dual role of being both the vector potential of the
electromagnetic field and the tangent to lines of
symmetry. We return to this below.

(17a)
(17b)
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4. MAXWELL EQUATIONS
Maxwell’s equations can be written as
(18a)
(18b)

Fye + Fyps + Friy =0,
Fiy =,

where s¢ is the current vector. Equation (18a) is
equivalent to Fj; = @y; — g = by; — by, We
show that if there is a real gauge then s* = 0. This
statement can be interpreted as meaning that charge
can occur only at singularitiecs of the manifold. In
fact, in a real gauge, Eqs. (17a, b) hold so that

Fiy = g5 — bae = 20y,
Fipe = 26
In the real gauge ¢i; =0 and R = 64, . Using
these and the equation,
Rinik¢ﬂ = ¢f|ﬂ|k - ‘l’fmnn
we see that
F§||i = 2{¢ﬁiui - ‘ISfliui} = “210(;{5‘?5” = _2§ni¢n
= z(gniqsl‘ﬁi - ¢n¢1)¢”
= 2A$;¢'d; — ¢,4"$,) = 0.

Therefore s* = Fi! = 0. It is not obvious that this is a
gauge invariant statement, but this fact can be
demonstrated by showing that

5t = gi"gm’cfnmuk = gi"gm,ffnmlllk’ (19)
since the last expression has weight —4 so that if it
vanishes in one gauge it vanishes in all gauges. To
show this it is sufficient to observe that the two terms
in (19) differ by

gmgmk{f‘:ikf im T+ f1i’cmf i
and to then directly compute this; it is zero.

5. A SOLUTION

It is possible to find a solution to the field equations
which corresponds to the classical Schwarzschild
solution of the free-space equation. This demonstrates,
as mentioned above, that the field equations do have
solutions.

If the equations are treated in a real gauge, (17a) is

Iin - %gnli = —gad'; — 2¢;¢;.

Equation (17b) is satisfied if we take ¢* = (1, 0, 0, 0)
and obtain a solution in which g, is independent of

(20)
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x. As in Ref. 3, pp. 280ff, assume

e 0 0 0
0 —¢& 0 0

8i; = 0 0 - 0 @n
0 0 0 —risin?6

where v and A are functions of r alone. Then the
right side of (20) is easily computed, and the left side
appears in Ref. 3, Eq. (9.118a)-(9.118d). All the
equations corresponding to j #% [/ are identically zero.
The (4, 4) equation is the same as the (3, 3) equation,
and the three equations corresponding to (1, 1), (2, 2)
and (3, 3) are, after minor rearrangement,

eH=Ar+r? —r?t= -3¢,
—e X fr+r)+ri=e,
197 n2 ” ’ ’
e-z[z}_ _@y_ v =1 )] = (22)
4 4 2 2r
Equations (22a) and (22b) yield

(222)

(22b)
and

et = (' + v)/2r, (23)
which is readily integrated to
e =etlfc—rd) (24)

where c is a constant of integration.

By differentiating (22b) and using (23) to eliminate
e’ from the resulting expréssion it is straightforward
to show that (22c¢) follows, so that (22c) is a conse-
quence of (22a) and (22b). Putting (24) in (22a) leads
to

14+ B3 —r)] = Ar+ €, 25)
which can be integrated to
= (c = Ptfe) = (kirfe = ¥, (26)

where k is arbitrary. It is, in fact, a routine exercise
to show that (26) and

e" = (1/c) — (kjr)c — )} @7
satisfy the equations. The result is
(@5 = {2 = %6 = r¥axty
_ (@dn®
(€ = MIAfe) — kI)c — ]
— r*[d6® + sin® 0(d¢)?*]). (28)

By changing the x! variable by x* = (1/e)(x')" and
changing the constants ¢ and k, the solution can be

987

brought to the form

1 c i
(ds)? = {— - k(—2 — 52) }(a‘rxl)2
c r
_ (dry?
(c = &){(1/0) = ki(e/r®) — &)

— r*[d6® + sin®6(d¢)*] (29)
with ¢* = (¢, 0, 0, 0). In this form it is apparent that
formally letting € — 0 yields the Schwarzschild metric
of general relativity. Also, ¢; = g4; ' = €fc — ke X
(c/rt — )b If € K c[r?, ¢, is approximately e/c —
kect[r. Note that (29) is a real gauge solution only if
r < ctle.

6. LINES OF SYMMETRY

It was shown above that in the real gauge the inte-
gral curves of the ¢¢ field are lines of symmetry. In
the solution presented in Sec. 5, for example, the
integral curves were just the x! lines, and translation
along these lines left the metric tensor invariant. The
¢* vector in this case is the 4-velocity of the singularity
except for a constant multiplier. We are led to the
conjecture that for any singularity the ¢* vector near
it, if nonzero, will have some interpretation as a
velocity or momentum. Presumably, if a solution
could be found representing two singularities, the ¢*
field near each would represent a velocity and one
could find the interaction between the two. While
this is a possibility for the future we can now only
derive a rather suggestive equation. We work only
in the real gauge and let zi(p, g) represent the integral
curve of ¢* through the point ¢, i.e., z%(0, ¢) = ¢* and
(02'/9p)(0, g) = ¢*(g). Assume also that in the region
considered ¢¢ is timelike. Then

_iz__d_z ‘ dz'dz? (dp g
ds ds Bii = dp dp (d ) H
. dp

= ¢'dig..[=£) = =F
¢¢g,,(ds) 6(ds)

Therefore dpjds = (6/R)} and dz*/ds = +4*(6/R)}.
The alsolute derivative of ¢* along the z* curves
(with respect to the I', connection) is given by

D¢’ z* dz* d : .
¢ = ¢uk = bl - ip 52 = i¢llk¢k(6/R)%'
(See Ref. 3, p 91.)

Remembering that Fj = 2¢,, in the real gauge
this can be written

T

This is formally quite like the Lorentz equation but
the interpretation is quite different.
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An explicit method for obtaining the Clebsch-Gordan series for the symmetrized n-fold direct
products of a finite-dimensional representation of a semisimple Lie group is discussed and illustrated.

The method is based on the use of weight diagrams.

1. INTRODUCTION

E discuss in this paper an explicit method for

obtaining the Clebsch-Gordan series for the
direct product of a finite-dimensional representation
of a semisimple Lie group £ taken with itself » times
and symmetrized according to a definite representation
of the symmetric group S,,.

Such symmetrized representations arise in a natural
way in elementary particle physics if states describing
the orbital angular momentum, spin, and internal
symmetry of a collection of n similar particles are
required to satisfy a generalized Pauli principle. For
example, this requirement has as a consequence the
result that a three-pion state arising from the decay
of an w must have a completely antisymmetric spatial
wavefunction. This is due to the fact that a state
consisting of bosons must be over-all totally sym-
metric and to the fact that an I = 0 representation of
SU(2) formed from three I = 1 representations must
be completely antisymmetric.

Our approach is to consider first the n-fold direct
product representation [D]" =D @D ®--- ® D and
reduce it according to symmetry type with one repre-
sentation (in general, reducible with respect to £) for
each standard Young tableau with n boxes. A par-
ticular case of this is the writing of a second-rank
(n = 2) tensor as a sum of symmetric and antisym-
metric tensors. Secondly, we determine a character
formula for the “symmetrized” representation corre-
sponding to each Young tableau (Sec. 2). This formula
is valid for any finite dimensional representation of
any semisimple Lie group. We then relate this char-
acter formula to weight diagrams and by manipulation
of the weight diagrams determine the Clebsch-Gordan
series for each of the symmetrized representations
(Sec. 3).

In Sec. 4, we demonstrate the method by working
out some examples diagrammatically for simple Lie

* This research was supported in part by the National Science
Foundation and by the Air Force Office of Scientific Research,
Office of Aerospace, U.S. Air Force, under AFOSR grant number
274-66.

groups of rank £ = 1, 2. For groups of rank £ > 3,
the weight diagrams are in a higher dimensional space
and consequently it becomes easier to work directly
with the components of the weight vectors in the
appropriate coordinate system. In Sec. 5, we give
some examples for the higher-rank simple Lie groups.

In Sec. 6, we discuss rules to achieve the same
results for SU(Z + 1) groups by manipulating Young
diagrams.

2. CHARACTER FORMULA

Let D:a— Dy(a) (i,j=1,2,---,m) be a finite
dimensional representation of the semisimple Lie
group £, where the D,;(a) are m X m matrices repre-
senting elements a € £. Let us suppose that £ acts on
the m-dimensional vectors y such that the vector
transformation law is given by v — ay with

(ay); = Dy(a)y;, 2.1

where the y, are the components of y with respect to a
fixed set of basis vectors. A general unsymmetrized
nth-rank tensor ¥, ...; belongs to the reducible

representation D" =D @ D® * - - @ Dia —

Dy ...isiigerns, @ = qul(a)D-',y.(a) ce Di“j,‘(a)'
We abbreviate the tensor transformation law to
Y —a¥ or

@¥) ) = Doy, n@¥ 55 (1) = indg -+ - i3 (2.2)

summation over (j) = j, - - - j, is understood. Let

1 2 <<+ n
T =
1' 2. n'

be a permutation of the subindices and define (n'¥),,, =
Y., ie,
(23)

Then it is well known that! ma¥" = a'¥. Similarly, if

("‘F)ili, ety & lFilfi,' Y

n!
X = 2 Akﬂk
k

! M. Hamermesh, Group Theory and Its Application to Physical
Problems (Addison-Wesley Publishing Company, Inc., Reading,
Massachusetts, 1964), p. 379.

988



SYMMETRIZED TENSOR PRODUCTS

(the 2, are real numbers) is an element of the group
algebra A4, of the symmetric group &,, we have

n!
XY =3 A,m¥ (2.4)
k

and
Xa¥ = aXV¥. 2.5)

In particular, we can let X be any one of the projection
operators?

T = f—' PR H % 7, (2.6)
n. g 7eCp

where o is a partition [£*/---2%*1"] of n letters, u;
is the number of rows of length j in the Young
tableau of shape or partition a, ¢j is the character
component of the group &, for a representation of
shape « and for the conjugation class C;, f =
[£°¢- - - 2°*1™], and f* is the dimension of the irreduc-
ible representation of &, associated with shape «, or,
equivalently, is the number of standard Young
tableaux of shape «. The numbers f*satisfy the relation
>(f*)? = n! and are given by?

ff=n 11 (l,—).,—r+s)!/]'<I(l,-{;k—-r)!,
r<s<k - (27)

where A, is the length of the rthrow and k is the number
of rows. The T* have the following properties®:

T*T# = 6T,

S T*=1 (theidentity lement of 4,). O

Thus we have

THaT*Y) = aT’T*Y = §*(aT*Y),
THwTY) = §(=T*Y),

where a € & and 7w € G,,. The relations (2.8) and (2.9)
show that the T* partition the space of nth-rank
tensors into subspaces which are invariant under the
direct product group £ ® S,,.

It should be noted that the 7* are not primitive
idempotents; i.e., we can write!

2.9)

fd
T =3 e,

r=1

where the e?, are primitive idempotents and satisfy

e:rega = 6aﬂane:r' (2.11)

(2.10)

t D. E. Rutherford, Substitutional Analysis (Edinburgh University
Press, Edinburgh, 1948), p. 66.

8 Reference 2, p. 26.

¢ Reference 2, p. 24,
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There is one e% for each standard Young tableau
with n boxes. In fact one can “complete” the set of
e’s by defining e, . where « ranges over all Young
tableau shapes with » boxes and r and s each range
from one to f* The n! e’s are chosen to be linearly
independent and to satisfy the relation®

erel, = 685, ez,. (2.12)
Thus, any 7 € S, can be written in the form
m =a; AL (el (2.13)
so that i
YV =Y,
ar P
neb W' = A8 LW, (2.14)

r=1
e:r(aefslp) = 6“/’6"(“’3"‘{’),
e:r(”egaqf) = 6aﬁ(e£r77' AR 61#6"3("953\?)-

We see that the space of nth-rank tensors is partitioned
by the &% into subspaces which are still invariant
under £ but no longer invariant under &,, . The effect
of the elements of &, is to carry a subspace of tensors
of the form /¥ (invariant under {) into a direct
sum of the subspaces of tensors of the form e,
r=1,---,f? (each invariant under g).

Let us denote the representations of £ associated
with the spaces of tensors of the form T*Y" and
eV by [D]* and [D]@", respectively, and the
characters of the representations D and [D]*" by
x and x% respectively. Then by Eq. (2.10) and since
[D]*" and [D]** are equivalent representations of
2, the character of [D]* is simply f*y*

Let the Clebsch-Gordan series for [D]*" with
respect to £ be given by

(@) _ o aqy(A™) (A?) .o aqy (A%
D] = mi{D + miD + + miD ,
(2.15)
then

=3 my A, (2.16)
b

(Here we use the highest weights A to specify the
irreducible representations 9 4).) From the definition
of T® we have

= Zf— 2 % 2 Dior- @.17
i nlp 7eCg

Finally, by the definition of conjugate classes for the
group £ and by the use of such relations as

i;kDu(a)D;k(a)Dki(a) = z D(a®) = x(a®) (2.18)

5 Reference 2, pp. 32, 50, and 53.
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we have®

= Sl @19)
where y%i(a) = [x(a’)]", ¢* is a character for &,, and
h=nlf% - 2"1"p -+ - p,lv,! is the number of
permutations in the class C,, § = [£*/- - - 2”1"].

Evaluation of (2.19) for a given representation of a
given group enables us to determine the constants m;
in Eq. (2.16) and hence the Clebsch—Gordan series of
Eq. (2.15). We now turn to a diagrammatic method
for evaluation of Eq. (2.19).

3. WEIGHT DIAGRAMS

At this point we consider some of the properties of
weight diagrams, since these determine the functional
dependence of the character. To each semisimple Lie
group £ there is associated a unique root diagram, a
set of points (roots) in an /-dimensional space, where
£ is the rank of £. The group of rotations and reflec-
tions in this space generated by reflections through
hyperplanes normal to the roots is known as the Weyl
group 1B.

To each irreducible representation (IR) of € there is
associated a weight diagram, a collection of points
(weights) in the same dimensional space as above
which have the following properties”-®:

(1) To each weight M there is assigned a positive
integer multiplicity yy; .

(2) The weight diagram is invariant under trans-
formation by any element S of 2, ie., yy = you.
© (3) If A designates the highest weight of the repre-
sentation, then y, = 1.

(4) For arbitrary x* (i = 1,-- -, /)

¢
3 3 vadsexp | 30504+ )]
M i=1

Se¥B

'3
=3 Egexp [2 S + a»ix’], @.1)
SeB

i=1

__ +1if Sis a rotation,
~ —1if S is a rotation-reflection;

és

d=1%>a,

a>0
ie., 0 is equal to one-half the (vector) sum of the
positive roots. These four properties serve to specify
all the yy given A.
The character y of a representation of £ is a function
of the conjugation classes of 2, i.e., (@) = y(b) if

¢ J. S. Lomont, Applications of Finite Groups (Academic Press
Inc., New York, 1959), p. 267.

7 R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee, Rev.
Mod. Phys. 34, 1 (1962).

8 N. Jacobson, Lie Algebras (Interscience Publishers, Inc., New
York, 1962), Chap. VIII.
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a = cbc, a, b, ¢ € L. The conjugation class is labeled
by a suitable set of real parameters ¢* (i = 1,--+,7)
with ¢° = 0 for the identity clement. In terms of the
¢* the character for the element a€ £ in a IR of
highest weight A may be written as?8

1a) = 1) = 3 exp [i s Mmbf]
3 Egexp [ii(sm + a)),¢’]
_ S =1 i L 32)
> Egexp [iZ(Sd),c[:’]
Sen §=1

The character of the product representation D* @
DA js given by

2@@) = xP (@)1 (@)
1 i
= Soew [i3Mig,| 3y exe i3 M9
M’ J= M §=1
1
= 3 Y@ exp [iZ(M' + M"),qb’] 3.3)
M'M” j=1
H
= Z VM CXP [iZM1¢’] ’
M. j=1

_ (1),,(2)
Ym = %YM’Y(M—M') s

where, in fact, the DV and D® need not be irreducible.
In general, the weight diagram associated with Eq.
(3.3), i.e., the set of weights with multiplicities yy,
does not correspond to an IR, but is the “sum” over
weight diagrams of IR’s of £.

Given a reducible representation we can determine
its decomposition into IR’s by “contracting” its
weight diagram into a collection of highest weights.®
By contraction we mean that each weight M with
multiplicity y, is replaced by a weight N =
S(M + ) — 6 with multiplicity yx = &gyy, Where
S is chosen so that N is a dominant weight. f M = N
for any S, then that point is simply discarded. Of
course, several points M may contract to the same
point N in which case yy is the sum over the various
§5(M)yy . Contracting a weight diagram for an IR
yields a diagram in which the only point with nonzero
multiplicity is the highest weight A with y, = 1 (cf.
properties 3 and 4 above); the other multiplicities have
all summed to zero. Contracting the weight diagram
corresponding to a reducible representation yields a
set of points, each the highest weight of an IR occurring
in the CG series. Moreover, the multiplicity of each
point is the coefficient m, of the corresponding IR

? Our contracted diagrams are the same as the girdle diagrams of
Behrends ez al.? except that we use one point for each set of w
points in a girdle diagram, where w is the order of the Weyl group 98.
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in the CG series. For example, in

PV @D = 3 m QA (3.4)
i L .
7
the m; are equal to the multiplicities of the points of
the weight diagram corresponding to the character
given by Eq. (3.3). Note that for arbitrary x the
contraction process leaves the value of

33 vubsexp [SM + 6) - x]

unchanged. No information is lost in the contraction
process in the sense that the uncontracted weight
diagram with weights M may be reconstructed from
any contracted weight diagram with weights N by
requiring yy =Ygy for all $ €W and

g g yufg exp [SM + 6) - x]
= I nEgexp SN +0)-x]. (3.5)

For the purpose of determining Clebsch-Gordan
series, an explicit construction of the ¢’ is unnecessary
since all that is needed is the functional dependence

.on the ¢’ and this uniquely specified "by weight
diagrams.

A simplification is introduced into the determina-
tions of the yy in Eq. (3.3) if one uses the contracted
multiplicities of either DY or D® (but not both)
rather than the uncontracted multiplicities. If DV is
irreducible, then as an intermediate step we have a
diagram with multiplicities y 5,y = yPy{2 = p4#. This
diagram is neither contrdcted nor uncontracted, i.e.,
invariant under B, but yields the same contracted
diagram as is obtained by the contraction of the
diagram with?®

— ), (2)
Yu = Z VYoM -
M

In order to obtain the weight diagram of y* of Eq.
(2.19) it is necessary to discuss the “weight diagram”
to be associated with y,(a) = y(¢*). This is obtained
by considering

m@=M@=mw=§maﬂéyw#}
(3.6)

where y, are multiplicities of the representation D.
This new set of points is similar to the weight diagram
of D but its linear dimensions have been multiplied
by a factor k. When this set of points is contracted,
the resulting y, will be both positive and negative
integers. It may not be a true weight diagram, but
there is a one-to-one correspondence between such dia-

10 A, J. Macfarlane, L. O’Raifeartaigh, and P. S. Rao, Syracuse
University preprint.
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grams and the functional dependence of y,(a). In the
construction of the contracted weight diagrams associ-
ated with the various terms of Eq. (2.19) one multiplies
together in the manner described above one contracted
and one uncontracted diagram, then contracts this pro-
duct before multiplying again by an uncontracted dia-
gram. Finally, the contracted diagrams for each g are
added together (in the sense of adding multiplicities).
The resulting multiplicities will turn out to be positive
integers even though negative nonintegers were
involved in the intermediate steps. These multi-
plicities are the coeflicients m; in Eq. (2.15) which we
have set out to find.

4. GROUPS OF RANKS ONE AND TWO

Let us now illustrate the technique by considering
tensor products of definite symmetry type for the
compact rank-two groups SU(3), G, and R(5) or
USp(4). Afterwards we consider the rank-one groups
SU(2) and R(3).

In the case of rank-two groups it is convenient to
consider two parallel sets of Weyl planes: one set (the
usual set) having a common intersection at the
origin and the second having a common intersection
at —¢§ [cf. Eq. (3.1)]. The points M and N =
SM +0)— 6, S are related by successive
reflections through the second set of Weyl planes.

Let us consider first the symmetric and antisym-
metric products of two SU(3) octets. For n = 2 Eq.
(2.19) becomes simply

2 = 30 + 1),

2 =302 = 1),
where y is the character of the octet representation,
421 is the character of the symmetric product, 71"l is
the character of the antisymmetric product, and x?
%2 are the same as in Eq. (2.19). In Fig. 1 we give the
uncontracted and contracted weight diagrams for
% 2% Xe» %), and Il Here, as in the succeeding
figures, the displaced Weyl planes are indicated by
dashed lines and the outlines of the root diagrams by
dotted lines. The dashed and dotted lines thus serve to
indicate the origin and the scale for each diagram.
Figure 1 shows that the {1} and {27} representations
appear only in the symmetric product, that the {10}
and {10} appear only in the antisymmetric product,
and that there is one symmetric {8} and one anti-
symmetric {8}, all of which is well known.

As an application, consider an exact SU(3) theory
in which a resonance decays strongly into two spin-
zero mesons belonging to the same octet. If this
resonance is somehow known to be a unitary singlet
or 27-plet, then we see that the generalized. Pauli

@.1)



992

~ g
SR DA
YW,
IEEREN X
| S~
: ~
4
2
]
IR
LI
r”l'-
Z 1%
L
) ~ 2
' : X
] /
! ¢ .-
i ad
P »
~o Ve
2 {
L
[ IS 'S
H S ~ 4O
H I X, N
t
| ,/’
! P
o bt
L
PR ORI T B I 2]
1IN
€3] !
1
K X 1 S~
P - | -
.
IR ] H e
LA CIUVET )
LT N PR .
-4 3 S 4
S “tx @
! l EREY . (R PY ﬁal
TN th ~®
Pl X ' ~

F1G.-1. Weight diagrams for ¥, %2, xa, {21, and {'*] for the octet
(adjoint) representation of SU(3). The uncontracted diagrams are
shown on the left, the contracted diagrams on the right. The sym-
metric and antisymmetric twofold products correspond to {1 and
%%, respectively.
principle requires that it must have J¥ = even*, while
if it is known to be a unitary decuplet, then it must
have JE = odd-.

The CG series for {8 ® 8 @ 8} can be partitioned
into four sets of IR’s corresponding to the representa-
tions [3], [2, 11, [2, 1], and [13] of &, . In Fig. 2(a) we

C. M. ANDERSEN

FiG. 2. (a) Contracted weight diagrams for x3, yx,, and x, for
the octet representation of SU(3). (b) Contracted weight diagrams
giving the Clebsch-Gordan series for the a-symmetrized threefold
products of octets (o = [3], [2, 1], [1%)).

show the contracted weight diagrams (cwd) for x3,
Yxz» ¥s- Note that the cwd for yy, consists only of a
single point. Use of the character formulas [Eq.
(2.19)] for n = 3:

1 = 3(° + 213 + 3xxe),
20 =10 — 20,
2 =300 + 22 — 3xxe)s

(4.2)

and of the diagrams of Fig. 2(a) yields the contracted
weight diagrams of Fig. 2(b).

For the four- and five-fold direct products of SU(3)
octets we obtain the partitioning shown in Tables I
and II. Two of the diagrams used in this computation
are shown in Fig. 3. In the first columns of Tables I
and IT we list the representations occurring in the
CG series (with respect to £) of the four- and five-fold
direct products, respectively. These representations

TasLE 1. Coefficients in the Clebsch-Gordan series for the a-symmetrized and the unsymmetrized
fourfold direct products of SU(3) octets.

Representation Symmetry type ( t)
(p1,p2) Dimension [4] 3.1 2,21 2,17 14 Unsymmetrized
1 3 2 3 1
0,0 {1} 1 2 1 8
an {8} 2 4 2 4 2 32
2,2) {27} 2 4 4 3 2 33
3,3 {64} 1 2 1 1 12
449 {125} 1 1
G, 0 {10} 3 1 3 20
©,3) {10} 3 1 3 20
@1 {35} 2 1 2 15
1,9 {35} 1 2 1 2 15
5,2 {81} 1 . 3
@, 5) {81} 1 3
(6,0 {28} 1 2
©, 6 {28} 1 2
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TasLE II. Coefficients in the Clebsch-Gordan series for the «-symmetrized and the unsymmetrized five-fold direct

products of SU(3) octets.
Representation Symmetry type f
p1, po) Dimension (51 6411 B,21 3,101 (241 2,101 (1% Unsymmetrized
1 4 5 6 5 4 1
(0, 0) 13 1 1 1 2 1 1 1 32
a1 {8} 2 5 6 7 6 5 1 145
@2 @n 2 7 8 9 7 7 1 180
(3,3) (64} 2 5 5 4 3 2 94
@4, 4 {125} 1 2 1 4 20
G, 5) {216} 1 . 1
G, 0) {10} 1 1 4 5 4 1 100
(©, 3) (10} 1 1 4 5 4 1 100
@, 1) {35} 1 4 5 5 4 2 . 100
a,4) (35} 1 4 5 5 4 2 100
G, 2) {81} 1 2 2 2 1 36
@ 5 81} 1 2 2 2 1 36
(, 3) {154} 1 " 4
(31 6) {m} 1 ee vee wee 4
(6, 0) {28} 1 1 1 1 20
©, 6) 28} 1 1 1 1 20
a1 {80} 1 5
a7 {80} 1 5

are specified in two different ways. The first way is by
giving (p,, ps), where p, is the number of boxes in the
first row of the corresponding Young shape minus the
number in the second row, and p, is the difference in
the lengths of the second and third rows. The second

TasLE III. Coefficients in the Clebsch—-Gordan series for the
a-symmetrized and the unsymmetrized three-fold direct products
of the 14-dimensional adjoint representation of G,.

Representation Symmetry type ( t
i3] [2, 1] [1?]  Unsymmetrized
1 2 1
{1} 1 1
{7} 1 - 1
27} 1 1 3
{T7h 1 1 1 4
{182} 1 1
{14} 1 2 5
{64} 1 2
{189} 1 1 3
{448} 1 2
{17} 1 1 3
{273} 1 1
E ~---f’// [
\\::;",,;"'.'. o usa
e I €0 w@ie)
PN ;o
;" """" S @ asn
i X, RN

FiG. 3. Contracted weight diagrams used in the calculation of the
Clebsch-Gordan series- of the a-symmetrized four- and five-fold
products of SU(3) octets.
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way is giving the dimension of the representation.
For example, the octet representation is specified by
(1, p2) = (1, 1) and by {8}.

Consider now the group G;. The symmetric and
antisymmetric direct products of the 14-dimensional

(b}

FiG. 4. Contracted weight diagrams which show the calculation
of the Clebsch-Gordan series for the a-symmetrized (a) two-fold,
(b) three-fold products of the 14-dimensional (adjoint) representation

of Gg.
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FiG. 5. Contracted weight diagrams which show the calculation
of the Clebsch—~Gordan series for the a-symmetrized two- and three-
fold products of the four-dimensional spinor representation of R(5).

(adjoint) representation with itself contain the repre-
sentations {1} + {27} + {77}, and {14} + {77},, re-
spectively. The contracted weight diagrams for x, x?,
12 212, and x["1 are shown in Fig. 4(a). For the
three-fold product of the adjoint representation we
obtain Table III from Fig. 4(b).

We turn now to the groups R(5) and USp(4). In
Figs. 5, 6, and 7 we have the diagrams for the sym-
metrized two- and three-fold products of the four-,
five-, and ten-dimensional representations, respec-
tively.

Having treated the rank-two groups, it is a simple
matter to treat the rank-one groups, SU(2) and R(3).
Since these groups have one-dimensional weight
diagrams, the CG series of the symmetrized n-fold
products of any low-dimensional representation can
be obtained very quickly by this method. In Fig. 8
we illustrate this for the two-, three-, and four-fold
products of the spin 3 representation.

5. GROUPS OF RANK ¢ >3

In the case of rank £ > 3, the weight diagrams have
three or more dimensions and consequently the graphic
procedures just illustrated are not suitable. However,
if one chooses to work in the appropriate coordinate
systems, namely the systems discissed by Racah,!

11 G. Racah, Ergeb. Exakt. Naturwiss. 37, 28 (1965).
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FiG. 6. Contracted weight diagrams which show the calculation
of the Clebsch—Gordan series for the a-symmetrized two- and
three-fold products of the five-dimensional representation of R(5).

the corresponding operations on the weight com-
ponents M, are not difficult. For the groups SU(£ + 1)
we imbed the weight diagram in an (£ + 1)-dimen-
sional space and impose the condition that

{1

>M;=0 (5.1)

so that there are only £ independent coordinates. The
Weyl group 2B is the group of permutations of the
components of M. We have & = +1 (—1) for even
(odd) permutations. The. M; are fractions with
denominator £+ 1 and the differences (M; — M,)
are all integers. The J; are given by ;= £+ 1 — j.
Such a treatment of SU(3) would label the SU(3) root
diagram as in Fig. 9.

For the groups R(2Z + 1) and USp(2£), M is gener-
ated by the permutations of the components M,
(i=1,---7) and by the changes of sign of any
number of the M;. We have £; = +1 (—1) for an
even (odd) permutation and any number of changes
of sign. Here all £ components of M are independent.
Finally for the groups R(2¢), I is the same as for
R(2¢ + 1) except that only an even number of
changes of sign are allowed.

By this procedure we find for SU(4) that

{15.® 15} = {1} + {15} + {20} + {84},

{15 ® 15}, = {15} + {45} + {4_5} 5.2)
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FiG. 7. Contracted weight diagrams which show the calculation
of the Clebsch-Gordan series for the o-symmetrized two- and
three-fold products of the ten-dimensional (adjoint) representation
of R(5).

For the three-fold product of the adjoint representation
[(p1s p2s ps) = (1,0, 1)] the coefficients in the CG
series are given in Table 1V. Again the representations

in the CG series are specified by both their Young

shape and their dimensionality.
For SU(6) we find, for example,

{35 ® 35)5 = {1} + {35} + {189} + {405}, 63
{35 ® 35}, = {35} + {280} + {280}. )
For the three-fold direct product of {35}’s we have

TaBLE IV. Coefficients in the Clebsch-Gordan series for the
a-symmetrized and the unsymmetrized three-fold direct products
of the adjoint representation of SU(4).

Representation Symmetry type ( o;
(p1; P2, ps) Dimension {31 [2,1]1 [1°] Unsymmetrized
1 2 1
©,0,0 {13 1 1 2
(1,0,1) {15} 2 3 1 9
40,00 {35 1 1
©,0,4) {35} 1 1
21,0 @3 1 2 1 6
©,1,2) {45} 1 2 1 6
2,0,2 {84} 1 y) 1 6
1,2,1) {175} 1 1 1 4
G, 1,1 {25} 1 2
1,1,3) {256} 1 2
(3,0,3) {300} 1 1
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FiG. 8. Contracted weight diagrams which show the calculation
of the Clebsch-Gordan series for the a-symmetrized two-, three-,
and four-fold products of the spin § representation of SU(2).
Table V. Finally, in Table VI we give the coefficients
in the CG series of the a-symmetrized two-, three-, and
four-fold direct products of the 56-dimensional
representation of SU(6). The representations appearing
in the CG series are labeled by (py,ps,ps,’ ),

to,~1.1) (1,-1,0}

FiG. 9. Root diagram for SU(3) im-
bedded in a three-dimensional space
showing components of the root vectors.

0,0,01

1,005 = (1.0.-1)

-t0,0t (0.1}

where p, is the number of boxes in the ith row of the
corresponding Young shape minus the number in the
(i + Dth row. Zeros on the right have been dropped.

6. YOUNG SHAPES

For the nonexceptional Lie groups other methods
for obtaining the CG series of an a-symmetrized n-fold
direct product representation have been discussed.'®
These methods are based on the fact that the decom-
position of the representation [D]*” of SU(/ + 1)
as expressed in terms of Young shapes (partitions) is
independent of ¢ for sufficiently large 7, and for small
¢ the only difference which arises is that one must
delete those shapes which have more than £ + 1 rows.

For example, we have the following symmetrized
product:

® = + + 14 Ll-
6 P B

12 D, E. Littlewood, The Theory of Group Characters (Oxford
University Press, Oxford, England, 1950), 2nd ed., Appendix A and
references cited therein, in particular, J. A. Todd, Proc. Cambridge
Phil. Soc. 45, 328 (1949).
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TasLe V. Coefficients in the Clebsch-Gordan series for the
a-symmetrized and the unsymmetrized three-fold direct products
of the adjoint representation of SU(6).

Representation Symmetry type ( c:)

(p1s Ps> Pas P, ps) Dimension [31 [2,1] [1%] Unsym-

1 2 1 metrized
©,0, 0, 0, 0) {1 .1 2
(1,0,0,0, 1) 35y 2 3 1 9
0,0,2,0,0) {75y 1 L 1
©,1,0,1,0 {188} 1 2 1 6
2,0,0,1,0 280y 1 2 1 6
©,1,0,0,2) 280y 1 2 1 6
,0,0,0,2 @405y 1 2 1 6
(3,0,1,0,0) 840} ... .. 1 1
0,0,1,0,3) {840} 1 1
1,1,1,0,0) {896 .. 1 .. 2
0,0,1,1,1) 8%} .. 1 2
(3,0,0,0,3) {2695} 1 .. 1
(3,0,0,1,1) {3200} .. 1 2
(1,1,0,0,3) 3200} ... 1 .. 2
,1,0,1, 1) {3675} 1 11 4

For SU(4), all four terms contribute, but for SU(3),
the last term must be deleted to give {8 ® 8}y =
{27} + {1} + {8}. Similarly for SU(2), only the
first term on the right-hand side has few enough rows
to contribute. In this case, we have simply {2 ® 2} =
{3}.

An analogous observation pertains for three- and
higher-fold products. As an example of this, consider
the SU(Z + 1) representations which have the same
Young shape as the {3} representation of SU(3). We

(BeB@B%JB%? :

33+ ,

(BGB@B%P;@*“ H LI,

HeHeH) -HH-

] L

(6.2)

These diagrams are valid for any SU(Z + 1) provided
one deletes those diagrams which do not apply to the
particular unitary group under consideration.

For the particular case of finding the CG series for
the symmetric and antisymmetric twofold direct
products of a SU(3) representation D, the rules can
be quite simply stated in terms of the Young shapes
which occur in the CG series. This is because for
SU(3) the coefficients which appear in the CG series
corresponding to g, take on only the values 1, 0, and

C. M. ANDERSEN

TasLe VI. Coefficients in the Clebsch-Gordan series for the
a-symmetrized and the unsymmetrized two-, three-, and
four-fold direct products of the 56-dimensional representation

of SU(6).
Representation Symmetry type ( ;,)
(p1, p) Dimension [21 12} Unsym-
1 1 metrized
(6, 0) {462} 1 1
“ 1 {1050} 1 1
2,2) {1134} i 1
©, 3) {4903} 1 1
Representation Symmetry type ( ;:
(p1, p:, ps) Dimension [3] 2,11 [1% Unsym-
1 2 1 metrized
,0,0 {980} 1 i
7, 1,0) {5720} 1 2
(5,2,0 {8910} 1 1 3
(3,3,0 {9240} i 1 1 4
(1,4,0 {5880} 1 2
6,0, 1) {6160} 1 1
4, 1,1 {11550} 2
2,2,1) {11340} 1 1 3
©,3,1) {4704} 1 . . 1
(3,0,2) {6000} 1 1
(1, 1,2 {5880} 1 2
©,0,3) {980} i i
Representation Symmetry type ( f:)
Pupespsspd) 41 13,11 127 12,18 (1) Unsym-
1 3 2 3 metrized
(12,0,0,0) 1 1
(10,1,0,0) 1 3
(8,2,0,0) 1 1 1 6
6,3,0,0 1 2 . 1 10
4,4,0,0) 1 1 2 1 i1
2,5,0,0) 2 1 9
0, 6,0,0) 1 1 1 4
,0,1,0) 1 3
7.1,1,0 1 1 1 8
5,2,1,0) 2 1 2 1 15
(3.,3,1,0 1 2 1 2 1 16
1,4,1,0) 1 1 2 11
(6,0,2,0) 1 1 1 6
4,1,2,0 1 2 1 2 15
2,2,2,0) 1 2 2 1 1 is
©,3,2,0) 1 1 6
(3,0,3,0 1 2 1 10
(1,1,3,0 1 1 i 8
0,0,4,0) 1 1
(8,0,0,1) 1 1
6,1,0,1) . 1 3
4,2,0, 1) 1 1 1 6
2,301 1 1 6
0,4,0,1) 1 1 3
5,0,1, 1) 1 3
G, LLD 1 1 1 8
1,2,1,1 1 1 1 7
2,0,2, 1) 1 1 1 6
©, 1,21 1 3
4,0,0,2) 1 1
2,1,0,2) 1 3
©,2,0,2) 1 2
(1,0,1,2) 1 3
©,0,0,3) 1 1




SYMMETRIZED TENSOR PRODUCTS

—1. By Eq. (4.1), the coefficient of a given representa-
tion (p,, py) in the CG series of y, must equal zero
if (p1, p,) occurs an even number of times in y?, and
this coefficient must be +1 if (p,, p;) occurs an odd
number of times in y2. Since a calculation of the CG
series of [D]? = D ® D by manipulating Young shapes
is well known,’® the only problem remaining is to
determine the sign of each nonzero term in y,. This
sign may be determined by the following rule.

Let k be the total number of boxes occurring in the
odd-numbered rows of a Young shape which corre-
sponds to a nonzero term in x? i.e., in the CG series
of D ® D. Then for any SU(Z + 1), the corresponding
coefficient in y, can only be positive (negative) if k
is even (0dd).}* The number k, in turn, is even or odd
according as p; + p, + ps + ps + * * * is even or odd,
ie.,

k= ZO(P41‘+1, + Paye) (mod 2). (6.3)

Thus for SU(3), the numbers (p, + p,)} together
with y? determine y, and hence, by Eq. (4.1), deter-
mine the CG series of [D]® and [D]I*"). For example,
in Eq. (6.1) the first, second, and fourth terms on the
right-hand side each appear once in x%, and thus they
have coefficients either +1 or —1 in y,. In each of
these terms the number k of boxes in the first and
third rows is four, and hence all three have coefficient
plus one in y,.

12 Littlewood, Ref. 12, pp. 94-98.
14 This is implicit in the article by Todd cited in Ref. 12.
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The above rule can be extended as follows. For any
SU({ + 1) the coefficient of (py, ps,ps, -+ ) in the
CG series corresponding to y, is zero unless the
number of odd-numbered rows which contain an
odd number of boxes is equal to the number of even-
numbered rows which contain an odd number of
boxes.* For example, in the third term on the right-
hand side of Eq. (6.1), there are two odd-numbered
rows (rows one and three) which each contain an
odd number of boxes and only one even-numbered
row (row two) which contains an odd number of
boxes. Thus, by this rule its coefficient in y, is zero
and it appears an equal number of times in [D]%] and
[DJ*"), This is consistent with the fact that this term
appears an even number of times (twice) in x2

For any SU(/{+ 1) with initial representation
(P15 P2,0,0,--) and for SU(4) and SU(S), if in the
set of p, which specify the initial representation D
there are only one or two p; which are nonzero, then
again the coefficients in y, can only be +1, 0, and —1,
and the above rules uniquely determine the CG series
for [D]I*1 and [D]*, In the general case the procedure
is considerably more complicated.
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A type of nonhomogeneous integral equation frequently encountered in interaction problems is
solved by means of the Heaviside expansion theorem, The energy spectrum is obtained in the usual
way from the solutions of the dispersion equation for the excitations, D(k, s) = 0. The momentum
spectrum is obtained as the solutions of 8D/dk = 0, which is shown to be also a form of the Cauchy-
Riemann equations. It is proved that the existence of a solution of D/dk = 0 is a necessary condition
for the existence of an analytic region on the momentum plane, It is also proved that the existence of a
solution of dD/dk =0 and 9D/ds = 0 is a necessary and sufficient condition for the existence of
analytic regions in both variables, provided the group velocity is finite and continuous. As an example,
two linearized self-consistent equations with arbitrary coupling are solved.

INTRODUCTION

ANY problems in statistical mechanics and
field theory have formal solutions in the form
of integral equations in which the kernel is a function
of a space-time interval, and often such equations may
be solved explicitly by convolution integrals which
eliminate one set of variables; that is, one can express
the solutions in terms of the initial and boundary
values.! The result, however, is another integral
equation involving a difference kernel in the form of
a propagator or dispersion relation appearing in the
denominator of the integrand. Examples are found
in the calculations of the correlation energy of the
electron gas.?2 Similar equations also result from
self-consistent field solutions of an equation of
motion.34
An equation of this type yields the energy spectrum
of the excitations as the solutions of the dispersion
equation but in general the momentum spectrum can
be found only in certain regions. In the case of particle
excitations in the Fermi gas, the number distribution
of particles in various momentum states has been
found in the high-density region by Kulik® and in the
low-density region by Belyakov®; but the momentum

* Work begun in the Department of Applied Mathematics and
Theoretical Physics, Cambridge University, Cambridge, England.

+ Permanent address: Box 94, La Jolla, California.

L Solutions of integral equations by Fourier transformation is
discussed in most standard works. A thorough treatment may be
found in Chap. 8 of P. M. Morse and H. Feshbach, Methods of
Theoretical Physics (McGraw-Hill Book Company, Inc., New York,
1953).

2 See, for example, the calculations of Hubbard and of Goldstone
in The Many-Body Problem, D. Pines, Ed. (W. A. Benjamin, Inc.,
New York, 1962).

3 L. D. Landau, J. Phys. (USSR) 10, 23 (1946).

4 H. Ehrenreich and M. Cohen, Phys. Rev. 115, 786 (1959).

5 1. O. Kulik, Zh. Eksperim. i Teor. Fiz. 40, 1243 (1961) [English
transl.: Soviet Phys.—JETP 13, 946 (1961)].

8 V. A. Belyakov, Zh. Eksperim. i Teor. Fiz. 40, 1210 (1961)
[English transl.: Soviet Phys.—JETP 13, 850 (1961)].

spectrum itself has not been found. In this paper we
show that in the case of complex energy and momentum
the complete spectra, including the collective excita-
tions, may be obtained provided the derivative of the
dispersion equation with respect to either the energy
or the momentum has nontrivial solutions.

1. FORMAL SOLUTION

Consider the nonhomogeneous equation
v(x, 1) = $(x, 1)
+ 2 g ke, 53 D900 0. (D)

In general the kernel is a functional of the potential
and a Green’s function obtained from a homogeneous
differential equation representing the response of
the four-dimensional system to a disturbance at
Xy, ty and y(X,, #y) includes the initial and boundary
conditions. A well-known example is, of course, the
S-matrix equation, whose analytic properties for
complex k have been discussed by Barut and Ruei.”
Provided K{(x,, #,; X, £) is a difference kernel in both
variables, the Fourier transforms in space and time
yield

F(k, 5) = Ok, 5) + AV, ¥ (K, 5), @
where we have absorbed a factor of (27)? into V. Thus
we find
wix, ) = s

1~ AV(k,s)
€)

where s and k are complex variables. In order that (3)
converge, the amplitude must be continuable into the
s* and k* half-planes and we confine our discussion
to integrands which satisfy these conditions, and are
real on the real axes.

1 )
ds e—tst dk e—t’k-x

(277)2 Cs C1

7 A. O. Barut and K. H. Ruei, J. Math. Phys. 2, 181 (1961).
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In interaction problems A is a variable coupling
factor and if there exists a constant A’ such that

1 — AV(k*,s*)=0 4)

for every k* and s*, then A’ are the eigenvalues of (1)
and k* and s* are continuous. With variable coupling,
however, (3) may still have singularities for particular
values of momentum and energy, k* and s*' (the
excitation eigenvalues). The solutions of (4) in the
continuum yields some function, s* = f(4,k*)
whereas the particular solutions of (3) for variable
coupling represent the discrete part of the spectrum;
but in general the momenta are arbitrary. The
complete spectra may thus be found by solving the
eigenvalue equation for these two conditions.

(D(k*,s*)e_i""e_iSt
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Formal solutions, including the momentum eigen-
values, may be obtained by use of the Heaviside
expansion theorem for each of the four complex
integrations.® The Heaviside theorem permits the
evaluation of an integral over a meromorphic rational
function by replacement of the integral operator by
an inverse differential operator acting on the denomi-
nator alone. The theorem holds without factorization
of the integrand provided the integrand is analytic.
This principle may be used to delineate the analytic
regions on the energy and momentum planes in the
following way. Following Landau contours in each
complex plane, the four integrations may be written
in the usual way as the sum of pole terms in the
analytic regions and principal value terms in the
nonanalytic regions. Thus formal solutions of (3) read

lim

+o0 +0
— - 1 o) P d -—istf dk —ik-x s
o0 =2 lim 2 im Ga@mon — v sl Lo s S vk, M)

where s*' and k*’ satisfy
(6)
™

and Pf is the principal value integral. The operations
over dk, dk,dk; may be carried out in succession,
writing k; = m; + ix; and summing over j so that (5)
holds for a momentum distribution of arbitrary
shape. Of course, (5) is of little interest unless the
analytic regions of D(k*,s*) are known. In the
following section we show that the solutions of (7)
exactly define the analytic regions in the energy plane.
The proof, which is given for a single coordinate,
holds for cylindrical symmetry of the momentum
distribution and may be extended to more complicated
cases by iteration.

D(k*, 5s*) =1 — AV(k*, s*) =0
and
9D(k*’, s*)/ok = 0

2. ANALYTIC PROPERTIES

Let D(k*) be a function of k* = 7 — ix. Then, if
D is real on the real axis, D(k*) = D*(k) and

;2D
o aK)’

ok 2

om

ok* 2

aD* _ 1/3D* aD* 1<8D* i @)
( 2
®

The factor 4 comes from solving k and k* for 7 and
« before obtaining the partial derivatives. Now putting
D*(k) = u(m, &) — iv(m, ), we find

JoD* 1[/0u ov ou . Ov
o _ L (g8 _ Yy _ fou  vY 9
ok 2[(% aK) '(aK + an)] @

If the Cauchy-Riemann equations are satisfied on the

Ok*, s*) )
upper half-plane,
0D(k*) 19D(k*) .9D(k*)
=- - 1
kx 2 ok 10
and
oD(k*)[0k = 0, (11)

and there are similar equations for the lower half-
plane. Hence if D* is analytic in £, it is independent of
k but not of k* except in the limit 0D*/d«x = 0. This
provides a necessary but not a sufficient condition
that D* be analytic on the upper half-plane. The real
and imaginary parts of (11) are necessary conditions
that the derivative be unique as = — 0 and d«x — 0
independently. A sufficient condition requires that
D* be differentiable® or independent of the angle in
both limits.

Thus if the ordinary Cauchy-Riemann equations
are satisfied, one obtains a guarantee that the derivative
is unique as o= = hcos 0 — 0 and ok = hsin 60— 0
independently, where £ is an infinitesimal; but this
condition is independent of the angle in both limits
and tells us nothing of the behavior as d«/dmr — 0.
The sufficient condition, that the function be differ-
entiable, is simply that the derivative be unique also
as tan 6 — 0O; that this condition is independent of the
omr — 0, 0« — 0 limits is evident from the observation
that both limits cannot be taken independently
except as # — 0 at constant angle. In brief, the neces-
sary condition is obtained from a variation of the
length of the radius vector at each point on D¥*,
whereas the sufficient condition is obtained from the

8 H. Jeffreys and B. S. Jeffreys, Methods of Mathematical Physics
(Cambridge University Press, New York, 1962), pp. 237-238.:
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variation of the normal at each point. The necessary
and sufficient condition that the derivative be unique
is therefore that the derivative be independent of
both variations in the limits >0 and tan 6 —0.
Noting that dx/dm = tan 6, the sufficient condition
is included in

2 op*

) ok O (12)

where D* is understood to be a function of angle as
well. Equation (11), which is the Cauchy-Riemann
equation for the lower half of the k plane, is a neces-
sary condition that D* be an analytic function in that
region; thus (12) is a necessary and sufficient condition
provided the partial derivatives are all continuous.
Unless D* is an explicit function of dr/dm, (12) is
satisfied identically.

We extend these results to two complex variables
as follows; a necessary condition that D(k*, s*) be
analytic in & is

dD(k*, s*) _ OD(k*,s*)ds + oD(k*, s*)
dk Os dk ok

=0. (13)

The first equality has been shown to hold quite
generally for several complex variables.® With
continuous partial derivatives of all variables, an
analytic region on the momentum plane is guaranteed
by the solutions of 9D*/0k = 0. Similarly an analytic
region on the energy plane is guaranteed by the
existence of solutions of 9D*/ds = 0, provided D* is
differentiable on the s plane. Thus (13) also provides
a necessary condition either that D* be analytic in
(if 0D*/ds = 0) or, if D*/ds % 0, that there exist
an analytic region on the energy plane as a conformal
mapping of an analytic region of the momentum
plane (if ds/dk = 0). Both conditions require that
oD*/ok = 0; but (13) is also satisfied by D*/dk =
~—(0D*|0s) ds/dk.

A sufficient condition is that dD*/dk be differenti-
able or that all derivatives be finite and continuous.
Thus a sufficient condition of analyticity in both
variables is

@ dD(k*,s*) _D(k*,s*)
a(dsjdk)  dk o

0 (14

provided s is not analytic in k. Hence s must not be a
function of k. In this case the complex group velocity
can be written in the usual way as the sum of real and
imaginary parts and (14) expressed as the sum of two
equations similar to (12); the second term in (14) is

? S. Bochner and W. T. Martin, Several Complex Variables
{Princeton University Press, Princeton, New Jersey, 1948).
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then obtained after taking the derivatives with
respect to the real and imaginary velocities.

Now we note that the Cauchy-Riemann equation,
(11), 1s identical with (7) obtained from the Heaviside
expansions so that the solutions of (7) are certainly
single valued and analytic provided D* is differenti-
able. In general the numerator of (5) is a function of
the initial and boundary conditions so that the
singularities of @® contribute terms which are inde-
pendent of the interactions. Thus, excepting the
trivial case, 1 — AV == @, the existence of solutions
of (13) and (14) proves the existence of an analytic
region of W(k,s) in the k and s planes and the
boundaries of the analytic region are given by the
solutions of Re (D*) = 0 and Im (D*) = 0.

Noting again that the Cauchy-Riemann equation
is formally equivalent to (7) obtained from the
Heaviside expansions, and that solutions of (14) are
analytic in both variables, we obtain Theorems 1 and 2.

Theorem 1: The existence of solutionsof dD*/0k = 0
and 0D*/0s =0 is a necessary condition for the
existence of analytic regions of W(k,s) in both
variables, and the solutions define the boundaries of
the analytic regions, and

Theorem 2: The existence of solutions of dD*/dk = 0
and dD*/0s = Ois a necessary and sufficient condition
for the existence of analytic regions of ¥'(k, 5) in both
variables provided the group velocity is finite and
continuous.

Thus if (14) has solutions, then D(k*’,s*) is an
analytic function of both variables and k*' and s*’
are the correct excitation eigenvalues, irrespective of
the analytic properties of ¥'. Thus we obtain the
corollary.

Corollary: Provided ds/dk is finite and continuous,
the existence of solutions of dD*/dk =0 and
0D*[0s = 0 is a necessary and sufficient condition

that the Heaviside expansions are a solution of (5).

3. SOLUTION OF THE LINEARIZED
SELF-CONSISTENT FIELD EQUATIONS

As an example of the method developed in Secs. 1
and 2 we consider the linearized self-consistent field
equations with arbitrary coupling. A self-consistent
formulation of an interaction problem requires that
the solutions of an equation of motion for the particles
be compatible with a coupled field equation repre-
senting the interactions. Self-consistent methods are
of interest because it is not necessary to specify the
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exact nature of the source, that is, as a sum of two-
body, three-body potentials, continuous charge distri-
bution, etc., but specific sources may be introduced
without changing the procedure.

In principle, self-consistent formulations may be
written for any particle interactions via a conservative
field. Such a scheme is made possible by noting that a
divergence equation may be written for any conserva-
tive field, that is, for any field analytic in all variables,
and related to the change in density in the manner
familiar in continuum mechanics.

We consider the coupled equations of motion

{{%o + U], Nk, )} = i(@/a)N(k, y)  (15)

and
(16)

where N(k, y) is the distribution function for particles
with momenta k at y = (x, f) interacting via the
internal field U(y) and with coupling strength 1. In
writing the inhomogeneous scalar wave equation in
the form (16) we obviously do not consider radiative
interactions or external fields. As we do include
longitudinal collective modes, the integrations are
over all final particle states including excited states.
Now writing N(k, x) = ny(k) + n(x), we assume the
field developed from ny(k) adds a constant term to
the initial Hamiltonian and n(y) then represents the
density fluctuations in space and time. The corre-
sponding field, obtained from (16) is the sum of
phonons or plasmons, etc., the field modes being
determined by the type of coupling.

Linearizing and taking matrix elements of (15) for
transitions between initial and final states p and k,
then Fourier transforming with respect to the
momentum-energy transfer, = = ¢, E, we obtain

DU(y) = A f &k N(k, 7),

Ur) = Uglre) + AP(T)[U + f &Pk n(k, T)] an
and
Nk, 7) = noky, 7)
+ G(p, Dlng(k)U, + n(k, YU, + ne(k)U(7) + 7,
(18)
where /i = 7i(k, ) and U = U(k, ¥) are functions of the

initial and boundary values of n(k, r) and U(r) and

their derivatives, G(p, 7) is
G(P, k, E) = (Ep - Ek + E)_l) (19)

the propagator for noninteracting particles in the
initial state, and I'(7) is

I'(g, E) = (¢* — E?[c®)Y, (20)
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the propagator for noninteracting fields in the
absence of particles. Setting U, = 0 (since U, is
included in the unperturbed Hamiltonian), after
cancelling the zero-order terms, (17) and (18) become

V) = () § d®kG(p, T)A
1 — AL(r) § d*kG(p, T)ny(k)

@n

and
n(k, 7)
= G(p, r){ 7 + ng(k)

AL + § d*G(p, 7)A] }
1 — AT(7) f d®kG(p, T)ny(k)
(22)

In obtaining (21) we have carried out a unitary
transformation of the form O(k, E)U(k, E)O'(k!, EY),
with k' = —k, etc.,, which in effect continues the
dispersion relation into the third quadrant for each
integration. The integral operator can be shown to be
unitary directly by carrying through the substitutions
k' = —k, E' = —E in D'(k', E'), whereupon one
finds D'(kt, E') = D Yk, E) so that one recovers the
initial dispersion relation valid in the first quadrant.
The result, (21), can be shown to be valid quite
independently by substituting p = [ d%n(k, 7) into
(15) and (16) and carrying through the same cal-
culation. As our example is essentially illustrative,
however, and the results are not sensitive to the
formal details, we omit the latter.
With (5), the solutions of (21) may be written

Ux,) =2 lim > lim

E E-E q a3

MU +§ @kG(p, q, E)Je "ot

X @RE@ PPN — EYe — A °kG(p, 4, Eyg(k)]
+ principal value integrals, (23)

where E’ and ¢’ are solutions of
D(p, 4, E') = ¢* — E"c?
~ 3[dkG(p, . B, 9 =0 (29

and, after utilizing 9k,/0g, = 1, and taking the average
of the first term,

~ 0°D(p, g, E)

lim (¢ —q)
2q°
: ' 8419243
=hm(q»q)[+ —ilads _
(43 + g3 + g37°

— AG(p, 4, Eyng(p, q)] =0. (29)

DY(p, q, E) has the usual form of a field propagator
modified by a vertex part representing the interactions
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with particles. The solutions of (24) thus give the
energy eigenvalues of the excitations in the interacting
system and (25) is an analogous equation for the
momentum eigenvalues. Writing a, = 1/2mi for the
virtual scattering length, (25) becomes, for a spherical
distribution,

g’ + 2[p + ag'ny(p, 4)lg’ — 2mE = 0. (26)

Now writing ¢' = 7' + ix’, E = o + iy, n(p,q) =
Re ny(p, ') + i Im ny(p, 4'), and resolving, one obtains

2'[7" + p + a5* Re ny(p, 4°)]
+ 2a5'7" Im ny(p, ¢') — 2my =0 (27)
and
7'[7’ + 2p + 243" Re ny(p, q°)]
— k'’ + 2a5  Im ny(p, )] — 2mw = 0. (28)

The solutions of (27) and (28) for 7" and «’ define the
boundaries of the analytic region in the momentum
plane, and similar equations may be written for the
energy plane requiring that o’ and ' also satisfy
either (14) or its conjugate; that is, if dE/dg = 0 then
dE*[{dg £ 0 or the converse, so that the analytic
momentum region can always be mapped on to one
half of the E plane. A straightforward calculation
gives

_ m.@ﬁ) = ma—y = &’ 4 a;‘ Im no(ps (I’) (29)
or’ on'
and
m@i — m-a-—ai = 7 +p+ a(;lRenO(p’q,) (30)
O’ o'
so that
dE _ 0w _ . 0w @D
dk' on' ox’

Comparing (27)-(30) we find that the analytic domain
defined by (27) and (28) may be divided into regions
defined by certain properties of the group velocity.
In region I, dw/dn" = dw/0«’ = 0 so that in equi-
librium
m = —p — dy" Reny(p, q),

wy = —m’[2m, y;=Imny(p,q)=0. (32)

The excitations are undamped but have no oscillations.
In this region of stationary particle excitations the
interactions simply add the momentum of the virtual
field —a;! Re ny(p, ¢') to the initial particle momentum
—p and the energy shift is obtained from a straight-
forward renormalization of the kinetic mass. In region
I the energy region is a conformal mapping, with in-
tercepts y’, = 0,

o}, = [Fpmax — 65" Re no(pmax , Gmax)]*/2m

J. T. ANDERSON

of the analytic momentum region with intercepts

17:;: = :kpmax bl a(','l Re no(pmax 3 q:'ns.x), K;'t = 0.

In region 11, 0w/0n" = 0, Jw/dx’ 7% 0 and to the
particle excitations are added stationary collective
oscillations defined by

my = —p — a; Re ny(p, q'),
xy = — i [2m — wylxh + 245" Im ny(p, q')]/2m,
(33)

In region II the interactions among particle excitations
are screened by bound collective modes for energies
® > 7'%[2m and the total energy is analytic only if
0D/dw = 0 in region 1L

In region III, dw/0k’ = 0, dw/dn" 7% 0 so that

vs = mtay wy Im ng(p, ¢').

x3 = —dy" Im no(p, 4'),

wg = wlm + 2p + 2a5" Re ny(p, 4')]/2m—x3’{2m, (34)
¥s = xslp + dg” Re ne(p, ¢))m

representing the excitation of field particles with
definite limits on their energies imposed by the
convergence requirements of ny(Pp.cs Gmax) and
which have a diffusion length proportional to "1,
In region III the analytic energy region is once more
a conformal mapping with intercepts

2
w'; == ”Wmax/zm F 2rrmax

X [pmax + 245" Re no(Pmax, gmax))/2m — ":'3/2’"

of the analytic momentum region with intercepts

Kh = —ay iIm No(Pmax, qmax) and 7, = L 7max

determined from the convergence requirements of the
distribution function. This requirement defines the
threshold for decay of field particle excitations into
particle pairs.

In region IV, Ow/dx’ # 0, dw/0n’ %0 and the
field excitations propagate as free particle excitations
in the continuum with

9*D(p, g5, E3)/0g5" = 0D(p, 45, E)[0E; = 0. (35)

For undamped excitations in region I, 7, = —p —
a;'Reny(p,q’) and o) = —m[2m reducing to the
initial state in the zero coupling limit. The second term
is thus the momentum of the “polarization” field due
to the dressing of particles by their interactions and
the particle excitations have undamped stable states
in the interacting system. In region II if y, = 0, =}
and «, remain invariant. In region III if y; =0,
wy = 7'%[2m and «; is invariant. Hence undamped
excitations may occur in all three regions.
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The renormalized phase velocity, as well as all
other physical observables in the interacting system,
may be obtained from the statistical averages over
the new distribution function, which we obtain from
the solution of (22). The result is

N(ka X, t) = "o(k)

.
lim lim ne ¢
+ % oy %q-'qs’ (0/0EX(9°/94*)G™\(p, 4, E)
F7 3 >1,— vz, ,—iEt
+3 tim 3 lim AU + fd I:G(i, q, E)ile %%
E E-~E" ¢ a~q" (3/8E)(3 /aq YG(p, q, E)D(P’ q, E)
+ principal value integrals, (36)

where E, and ¢, are solutions of the single particle
dispersion equations,

—iEt

G (p,q,E)=lim(E—~>E)E,—E,+ Ey=0 (37)
and
lim (¢ = ¢)(?*/94° )G (p, ¢, E) =0  (38)

and ¢” and E” are solutions of the appropriate
eigenvalue equations in the second term; there are,
however, only two sets of values corresponding to the
solutions of Egs. (24), (25), (37), and (38), as the free
field equations, I'"* = 0 and 9°I'~}/0¢® = 0 have only
the trivial solutions, ¢, = E; = 0. As we have already
found ¢’ and E’ which appear also in (23), there
remain only the single-particle eigenvalues obtained
from (37) and (38). They are

m,=—p, x,=0, E,=—p°2m, (39)

the familiar results for noninteracting particles. Now
carrying out the operations in the denominator of the
second term we find that G™D = 0 and

(@%/0g%)(0J9E)GD = (3/24)GD
yield either G = 0 or D = 0, and therefore either
G10®D[og® = 0 (G~ # 0)

or D33G/0¢® = 0 (D # 0), which give just the two
sets of eigenvalue equations we have already found
for the single particle and field excitations. Hence the
distribution function separates quite naturally into
two parts, a short-range contribution

n(k,x,)=4> lim 3 lim

E E-—-p/2m q q—=—p

AU + [ @kG(p, q, E)iile“%e'E"
D(p, 4, EX(0/9E)(@%/94*)G\(p, q, E)

plus principal value terms, and a long-range contri-

(40)
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bution
n(k,x,1) =1 lim 3 lim
E E-E ¢ a—¢
A[T + § d*kG(p, q, E)ilev%e ' E @1

G™(p, 9, E)9/OEX"/34)D(p, 9, )’
where the eigenvalues of n, are the single-particle
values and those of », are those for the field. 4, and A4,
are constants resulting from the partial fraction
expansions. The remaining terms in the denominator,
(0G'/0E)(0°D/0g®), (0 D/OEX0°G~/0g®), DO*G~[dq?,
G~10°D|0g®, contribute only to the principal part in
the limits 8G—*/0E = o0, 8D/0E = o0, D = o0, and
so on.

The distribution (36) now consists of a noninter-
acting single-particle contribution independent of the
coupling strength, plus two interaction terms, both 4
dependent and representing the long-range and
short-range parts of the correlations, plus principal
value terms. The noninteracting single-particle contri-
bution diverges however due to the vanishing of
(0%/0¢*)G* as ¢ — ¢, unless /i = 0 in the limit; this
means there can be no noninteracting single particle
contributions to the interacting part of the distribution.
The divergence in n, due to vanishing of 04/0g*G—
in the limit is canceled by a divergence of the same
order due to D(g, E) in the denominator. Thus

lim (g —» —p)lim (E — — p2/2m)

x [qz _ E2/c2 - aglfdak - no(p, @) jl
—q —2pq+mE
—1 4 n s
— p2 _ p4/c2 . aolhm(q» _p) qp O(P q)
~29 —2p
(42)

diverges in the same manner as (0%/0¢*)G~! approaches
Zero.

The principal value contributions to both U(x, ¢)
and n(k, x, 1) can be separated into contributions due
to the integrations along the boundaries of the
analytic regions plus terms from the nonanalytic
regions. The boundary contributions, represented by
the Cauchy principal values, are just the arithmetic
averages of the contributions inside and outside the
analytic domain and of course represent the collective
excitations of the system. The nonanalytic parts then
represent the uncorrelated background fluctuations.
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Conditions under which a Laplace transform L{F(#)} = f(s) may be analytically continued, by means
of an asymptotic expansion of F, outside the half plane of convergence of the Laplace transform integral
are investigated. For ¢ > & define Ry by F(£) = t#{Q ¥ a,t™" + Ry(1)} for some fixed fwithRe § < 1
and suppose that Fis integrable on [0, k) for some k > 0. First, it is shown that if Ry(r) = O{N o[t} +1}
uniformly in N and £ > & for some ¢ > 0, then the singular part of fat s = 0 can be determined in terms
of a;. If 8 is an integer, then in some neighborhood of s = ¢ it is shown that

-
LEF()} = s81 3 aT(1 — i — B)s* + (log s)g(s) + A(s),

=0
where g and /& are analytic at s = 0 and g(s)} = 2;21 {(—1Ya; pgs (i — DL If Bis not an integer, in some
neighborhood of s = 0 it is shown that L{F(t)} = s#-%¢(s) + k(s), where g(s) mz,f:o al(l —i— B,
with g and & analytic at s = 0. Second, if the estimate on Ry(t) holds uniformly in N and in the
complex ¢t plane in the region ({t] > &) r (larg¢| < (3») + 4) for some 4 > 0, then the analytic
continuation of fcan be determined in terms of the a;. For any &' > & and for [args| < =

we have LIF(1)} = [¥ e-#F(t)dt + [ al)T'(2 — B, k'(s + ))(s + 1)8-* dt, where I is the incomplete
gamma function and a(¢) is the analytic continuation of E;:i_a a;#'il, If k =0 in the hypotheses, then with
a slight further restrictionon F(tjone has L{F(1)} = T2 - B L§° a(t)(s -+ 1)8-2 dr. A generalization and
application to a problem in nonrelativistic dispersion theory which includes a Coulomb potential

MAY 1967

are discussed.

1. INTRODUCTION
A. Background

TO solve a nonrelativistic potential scattering

problem by the method of partial wave dispersion
relations it is necessary to know the location and
nature of all the singularities of the scattering ampli-
tude A(g) in the upper half ¢ (momentum) plane.
Allowing for the possible presence of a Coulomb
potential, an integral equation for the partial wave-
function (g, r) is '

g, r) =g, 7
-M f Ha  DHPAg, )V (U, ¥) dr,

where M is twice the reduced mass, V is the nuclear
potential, and f and H are regular and irregular
Coulomb functions, respectively, defined by

(g, ) = r"e"O(L + 1 + in, 2L + 2, —2igr),
5, 7)
= D(Q)r'*e“ ™ V(L + 1 + in, 2L + 2, ~2igr),

‘where ® and ¥ are confluent hypergeometric func-
tions,! # = Me®[2¢ with e the common charge of the
! Bateman Manuscript Project, Higher Transcendental ?:mctiorw

(McGraw-Hill Book Company, Inc., New York, 1953), Vol. 1,
Chap. V1.

scattering particles, and D(g) is chosen to make the
Wronskian {5 — {p{" = 1,

D(g) = —ie ™ LQ2g)* P T(L + 1 + in)/TCL + 2).
The dependence upon the orbital angular momentum
quantum number L has been suppressed in the nota-
tion. r_ (r.) denotes the smaller (greater) of r and ',
fis an entire function of g for all finite r. b+ is analytic
in the g plane except for g = 0 and some points on the
negative imaginary ¢ axis which accumulate at ¢ = 0,
but approaches a unique limit as ¢ — 0 along any
path which avoids a small sector containing the
negative imaginary axis.?

The integral equation is equivalent to the differential
equation for r > 0: ’

2 2
[f—; +q - Mo 'Lﬂ’*:;l)]u(q, r)
r r r
= MV(ni(g, n,
and the two conditions: (g, 0) =0 and U(g,r)—
(g, r) + A(g)b'* (g, r) as r — co. f and b+ are solutions
of the differential equation with ¥(r) = 0. A(q) is the

scattering amplitude. From the integral equation for
U, A(g) is seen to be

Alg) = —M ﬁ Ha, PV, 7) dr.
The units are such that 5 = ¢ = 1.

* L. Heller and M. Rich. Phys. Rev. 144, 1324 (1966).
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ANALYTIC CONTINUATION

For a potential ¥(r) which is a superposition of
exponential potentials,

V(r) = f ® o(@)e du,

In
and such that ¥{(r) is less singular than r—2at r = 0, it
is known®-® that the only singularities of A(g) in the
upper half ¢ plane are: branch points at ¢ = }niu,
n=1,2,3--; possible bound state poles; and an
essential singularity at 4 = 0 which, however, is of
no consequence® for contours which avoid a small
sector containing the negative imaginary g axis.

Furthermore the discontinuity in A(g) across the
upper imaginary g axis,

lim [A(g + &) — A(q — ),

€0

which is the needed input for the dispersion relation,
is correctly given® in the region u < —ig<
3(n + Dy, except at bound state poles,” by the sum
of the discontinuities of the first » Born approxi-
mations to A(g), whether or not the Born series con-
verges. The nth Born approximation is obtained by
putting the (n — 1) iterate for U from the integral
equation into the above expression for A(g), the
zeroth iterate being f.

The problem arises, therefore, of how to determine
the location and nature of the singularities of a given
Born term. If one can find an analytic expression for
the desired integral (which is » dimensional in ath
Born approximation) then the problem is essentially
solved. In general, however, one cannot find analytic
expressions for these integrals® and this leads to the
attempt to find a general way of extracting their
singular parts. Lookingat the first Born approximation
for a Yukawa potential, the integral under considera-
tion is
—HUT
e’ dr.
r

-M f ", »

Since the integrand is an entire function of ¢ for each
fixed r, the existence of singularities of the integral is
associated with a failure of the integral to converge at

3 H, Cornilte and A. Martin, Nuovo Cimento 26, 298 (1962).

4 D. Y. Wong and H. P. Noyes, Phys. Rev. 126, 1866 (1962).

5 J. R. Rix, thesis, Harvard University (1965).

¢ See Appendix A of Ref. 2, and Appendix B of A. Scotti and
D. Y. Wong, Phys. Rev. 138, B145 (1965).

7 If the rest of the discontinuity is known exactly, then omitting
the discontinuity at the bound states has no effect on the solution
of the dispersion relation. ‘

8 Some problems which have been solved analytically are the
first Born approximation for a Yukawa potential without charge
and with charge (see Ref. 4 for the latter). The second Born approxi-
mation for a single Yukawa without charge has been treated in
P. M. Morse and H. Feshbach, Methods of Theoretical Physics
(McGraw-Hill Book Company, Inc., New York, 1953), Vol. II,
p. 1082, and in M. Luming, Phys. Rev. 136, B1120 (1964).
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its upper limit. There are two distinct series in the
asymptotic behavior of f, one of which has a common
factor of exp(igr), and the other of exp (—igr).
Therefore 2 has three distinct series with common
factors of exp (2igr), 1, and exp (—2igr). When these
three kinds of terms are put into the integral, it is
reasonable to expect that only exp(—2igr) can
produce singularities in the upper half ¢ plane since
the integrals involving terms of the other two types
will converge if Im ¢ > 0. Defining

B(s, r) = r e (s — w)/2i, 1),

where s = u + 2ig, puts the integral in the form
—Mf e *"B(s, r) dr.
0

B(s,r) does not have any increasing exponential
behavior at r = co. If B were independent of s, this
integral would be a Laplace integral. If B were
weakly dependent on s, the analytic properties of
the integral should differ little from those of a Laplace
integral. In Sec. VI this generalization of a Laplace
integral (or transform) is discussed.

B. Outline

For F(¢) integrable on each finite subinterval of
[0, ), as is well known, the one-sided Laplace
transform

w
f(s) =lim | e *F(¢)dt = L{F(t)}
w—w JO
defines, in general, a function of a complex variable
s which is analytic in a half-plane Re (s) > «. Unlike
power series, there may not be singularities of f(s)
on the axis of convergence, Re (s) = «, of L{F(1)}.
In the literature there seem to be few criteria for
determining singularities of f(s).?

Our purpose is to show how term-by-term applica-
tion of the Laplace transform to the asymptotic
expansion of F(f) sometimes gives information on
singularities of f(s) on the axis of convergence.

Any singularity of L{F(7)} results from the behavior
of F(f) as t— co. This should be reflected in an
asymptotic expansion of F(f) as t — o, say 22 at™".
But

f “ertdr = (1) — D! logs
1

+ (entire function of s)

* G. Doetsch, Handbuch der Laplace Transform (Birkhduser,
Basel, 1950), Vol. I; (1955), Vol. 11; (1956), Vol. IIL
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for i a positive integer.!® If F is integrable on (0, 1) we
have, proceeding formally:

L{F(t} =Jwe"t(§ a,.t"') dt +fle‘S‘F(t) dt

— % (=Da; 4
s T logs(gl(z Y

where perhaps A(s) is analytic at s = 0. For reasons
discussed in part A of this Introduction, one is inter-
ested only in f(s) = L{F(#)} modulo a function analytic
at a singularity of f(s). The above expression for f(s)
provides a convenient decomposition of f(s) at s = 0;
J(s) is expressed as the sum of a function analytic at
s = 0, a function a,/s, and the product of log s and a
function analytic at s = 0. The purpose of this paper

is to find justification for this formal procedure.
Doetsch!? states a theorem that if F(¢) is asymptotic

) + h(s),

to

N
Set(Reag>Rea; >+ > Reay > —1)
v=0

for t — oo then near s = 0, f(s) is asymptotic to

N
e, (1 + a)s
v=0
in the right half-plane. Only those powers of ¢ are
included which give infinite singularities at s = 0.

Section II gives a stronger theorem under which a
weak Watson condition on the asymptotic.expansion of
F permits the determination of the complete singular
part of L{F}ats = 0. An application of this theorem is
givenin Sec. I1I. SectionIV gives another theorem under
which a strong Watson condition on F ensures that
s = Ois the only singularity of L{F}in Jargs| < = 4+ 4
for some A > 0, and gives a formula for the analytic
continuation of L{F} to that portion of the complex
plane. Section V gives an example of the application of
Theorem 2. Section VI discusses the problem mentioned
in part A of this Introduction and outlines a generaliza-
tion of Theorem 1. Section VII reviews the literature
on estimates on the remainders of asymptotic series
which are necessary to apply these theorems.

The term “Watson condition” arises from G. N.
Watson’s investigation of the characteristics of certain
asymptotic expansions.!?

The first theorem of this paper can be regarded as an
example of a more general phenomenon where a linear
transformation T is given and the term-by-term appli-
cation of T to a general expansion F~ Y F,yields,

10 See Ref. 9, Vol. I, p. 468.

11 See Ref. 9, Vol. II, p. 97.

12 G, N. Watson, Phil. Trans. Roy. Soc. London (A) 211, 279
(1912).
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in general, an expansion T(F)~ 3 T(F,)~>, f,.
The expansions F(f) ~ > F,(f) are usually associated
with a certain region of ¢ space and have an “error
term” R(N,?{) which satisfies various conditions.
Other examples of this phenomenon are discussed
under titles such as “Watson’s lemma.”” See Erdélyi3:14
and Erdélyi and Wyman.15
Throughout, the term
““analytically continue.”

“continue” is short for

II. FIRST THEOREM AND PROOF

Theorem 1: Suppose F(f) is a function, real or
complex valued, defined and continuous on (0, )
and for t > k:

N
FO = | Sart+ Ry |,
where .
Ry(1) = O{N!(o/)¥*1}

uniformly in N and ¢ > k. Without loss of generality,
restrict Re § < 1. k and o are fixed positive numbers.
Suppose F(¢) is integrable on [0, k). Then L{F(z)} is
analytic for |args| < 4w, s # 0, and in some deleted
neighborhood of s = 0, whose radius is proportional
to 0%, the continuation of L{F(f)} has the form, in
case f is an integer,

1Y al(l — i — B)s' + (log 5)g(s) + h(s),
i=0
where g and h are analytic at s = 0 and

=0

a;_gS

g(s) —gl I
For § not an integer, the continuation of L{F(f)} has
the form

s"g(s) + h(s),
where g and /4 are analytic at s = 0 and

g(s) =§0ai1"(1 —i— p)s’.

Remark: The condition on Ry(?) is called the weak
Watson condition.

Since the proof is somewhat involved, we first
outline it. An estimate of a,, shows that a,, = O(n! ™).
We then construct the series 3 a,u"/n! = a(u) which
is convergent for |u] < 1/o. [a(u) is called the Borel
transform of the series Y a,t".] Using a(u), we
construct a function F(¢) and show that f(s) = L{F(s)}

13 A. Erdélyi, Asymptotic Expansions (Dover Publications, Inc.,
New York, 1956), p. 34.

14 A, Erdélyi, Arch. Ratl. Mech. Anal. 7, 1 (1961).
( 18 A. Erdélyi and M. Wyman, Arch. Ratl. Mech. Anal. 14, 239
1963).
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satisfies the conclusion of the theorem, considering
separately the cases § an integer and § not an integer.
We then show that F(t) — F(f) = O(e~*") for some
b > 0and thus that L{F(t) — F(¢)}is analyticat s = 0.

Proof. From the hypothesis there exists K such that
fort > k:
IRyl < KN! (a/)¥H,
Let N > 0.

layl < (Ry-al + [RyDEY < KN 0V[(1/N) + (a/1)]
< EN!6"[(1/N) + (o/k)] < KN! o, ¢y

where K = K(1 + o/k). Thus the series

3 (apfntu

n=0

a(u) =
is convergent for |u| < 1/o. Put 7 = 1/(40) and define
Fn = tl"ﬂf e a(u) du. (1a)

0

For Res > 0 and 4 > 0 we have

TQ — B)u + sy P = f Cetronag ()
0
For Re s > 0 define

fioy =P 3)
and using (12) and (2) obtain for Re s > 0:
As) = L we‘"tl‘”{ L () du} dt
Fis) = fo ra(u){ fo © ety dt} du, @)
Jioy=1C - p)[ awu + 97 P dw. )

Since the iterated integral in (4) is absolutely con-
vergent for Res > 0, the interchange of order of
integration is justified. The integral (5) defines an
analytic function of s in the s plane cut along [—~, 0].1¢
We write from (5):

K

fy=T@-p)3

n=o n!

u
Javg @

since the series Y. (a,/n!)u™ is uniformly convergent on
[0, 7].

1“~Another way than that below to discuss the analytic properties
of f(s) is to integrate (5) by parts until # + s is raised to a positive
power and then to break up the remaining integral into two pieces:
0 — —s and —s — 7. The first integral together with the integrated
terms gives the desired answer and the second is analytic at s = 0,
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Suppose f is not an integer. Then

Jo)=T@ - )3
n=0 R!

X {yé] (:)ﬂ(-l-;?”_;v_l (s + 'r)"——1+.8 — sv—1+p]}.
' @
Using (1), we have
rgon vg)( ),3+,,_1(S+ )
< K,Zo"’s‘"éo(")m—f'—_"—l +

< KZlasl z

v=0

()m—:-—ul +1

ZIslgo()

~ min Iﬂ + 'VI n=0
v=—1
e K  $
min [f + ] 2/ (1 * ’1 i )
K n
Ef_llﬁ—-l-l g Qlos| + D"  (Ta)

In the circle |s] < 1/(40)

is, from (7a), a uniformly convergent polynomial series
and consequently represents an analytic function of s
in that domain. In particular, it is analytic at s = 0.
For the remaining part of (7) we have, using problem
9 on page 260 of Whittaker and Watson!”:

< S —5) Pty
g g()ﬂ+v—l ’
= —.gf-1 nF(uB 1)
#13a-or po)
sﬂl -] n
—I‘(Z_—[}_)ngoa" (1 —n— B)s™

Thus, for § not an integer, we have

fs) = s”—l(ioans"f‘(l —n— /3)) + h(s), (8)

where A(s) is analytic at s = O and the series is con-
vergent for |s| < 1/e.

17 E, T. Whittaker and G. N. Watson, A Course of Modern
Analysis (Cambridge University Press, Cambridge, England, 1950),
4th ed.
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If 8 = 0, then from (6),

fs) —;ﬂ;{i(n)( Jill

v=0 \V/ ¥ —
#1

[(S + )7 =57

+ n(—s)"" log s_j-_z}
s
s+ 7\ < an(_l)”_l n—1
= |lo s
( g s )ngl (n— 1!

+3 2
n=0 N =

v—l]-

2 [+ —s ®

( )( s)"
Tyso\y/ »—1
v#1

As before, the series

D s

is uniformly convergent to a function analytic for
|s| < 1/(40). The omitted term correspondingtov = 1
is not essential. From the other contribution to the
double sum in (9) the » = 0 term is explicitly evaluated
as a,/s and we now examine the remainder. Again
using (1), we have

G+7?

S)n—v v—1

0 an n n (__
~2 —
ngl n! go(v) y—1
v#1
1

< IsIIK El"”'"f (") —

So\n) = 1
1

= |s|"'K 3 [os|"2"

n=1

<K S fosi"3 ()

v=0\Y,
= 2Ka Y |20s]|™
=0
Thus if |s| < 1/(20),

D) (n)(_ts)_”““sv_l

n=1 n! v=o\?v/ v — 1
v#1

is uniformly convergent to a function analytic for
Is] < 1/(20). Thus, from (9), we have for § = 0,

f(s) = log sgl( (_ 3‘

+ (function analytic at s = 0),

(10)
where the series is convergent for |s| < 1/o.
If 8 is an integer, one writes for ¢ > k:
—p—1

F(t) = 2 at?t 4 Z a; ™% 4 PR\(D).

te0
The first summand on the right side is treated sepa-
rately. The theory developed above for the case
B = 0 can be applied to the second summand and
remainder by defining b, = a, ,, except that the
estimates on the b, now include an extra factor

i=—p

W. A. BEYER AND L. HELLER

(¢')* which can be absorbed into the o of the hypoth-
esis.

To complete the proof, we show that the Laplace
transform of F(f) — F(¢) is analytic at s = 0. Inte-
gration by parts N + 1 times of the formula (1a) gives

Fi) = t"”[% gﬂl‘ -

n=01 n=0 "

+ t—Nf —-tu (N+1)(u) du:l

N )
et z a' (n

and hence

F() — F(r) = [o(m(‘-’t)”“) +et goLt’(r_)

T
— t_N e—tua(N+1) (u) du:l t—ﬁ_
0

We need to estimate

(n)(u)

an

vy—n

Zvu

v=n (‘V - n)'
We have

i 1
la" W) < K3 —
v=n (‘V bt
= Kn!Y (v)a" |u—™
v=n \N

= Kn! |u|‘"§: (P + ")(o [uly>"
n

p=0

v

IV'—ﬂ

= Kn!lo"(1 — o Ju])~'",

Using (12), we have for ¢ > k that

e—tr% a(n)(T) = O(e—trg%i (%0’)")

n=0 1" n=0

(12)

and

t‘Nfre"“a(N+l’(u) du
0
= O(t‘N VYN + 1)!'fre““(1 — ou) NV ? du)
0

- o(t-NaN+=(N + 1) f ‘(1 — ouyN-? du)

= ot + i (=EES=)
_of: N N+1 N 1 ‘(1 oT —(N+1)
(e + S

= O(N(40/30)").
Thus, from (11),

F() — F(t) = r* {O(N ! (E)N)
Fo(-o2n(3))) o

uniformly in N and ¢ > k.
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We want to show that F(r) — F(¢) falls off suffi-
ciently rapidly (exponentially) as ¢ — co. Since the
two functions on the right side of (13) are functions
of t and N, with the bound being uniform in N, we
may choose any value of N giving the desired result.
The choice is made by finding, for each value of ¢, the
N value which (approximately) minimizes the first
term on the right side of (13). Put 7 = 3t/4¢ and

g(N, ) = T(N + 1)i V. (14)

Contour lines of g are shown in Fig. 1 where we now
regard N as a continuous variable. We have that

0g/ON = g[—log 7 + (d/dN)log T'(N + 1)]
= g[—log i + »(N + 1)].

Along the curve in the (£, N) plane defined by dg/oN =
0or
f = exp [v(N + 1)] (15)

g has a minimum value for fixed 7. A formula in
Whittaker and Watson'” (page 248) gives

S
2N+ 1)

.._J.o [% — _1; + ;t_lt_l_:le——t(N-l-l) dt. (16)

As N — oo the right side of (16) — 0. Thus from (15)

9(N + 1) — log N = log (1'+%) +

i—-N

along the line 9g/0N = 0 as N — co. Hence choose N
to be the largest integer in 7 = 3t/40. Using

P(N + 1) _ (zﬂ)iNN+§e—Ne0/12N
for N>0,0<0<1,
Nt = o)
for any 6 > 0, uniformly in N > 0, and

eO/lzN = 0(1)
gives
(N + 1) = O[NVe "9¥]
and therefore
g(f, t) — O{e_(l“‘”w“}. (17)

We now examine the second term on the right side
of (13). For 1 £ n < N = [3t/40] we have

n! (4o/30)* < (n — 1)! (4o/38)" 2.
Hence
—ir ia_ ¥ 1T —t/d0 it 1)
¢ §n!(3t) <N+ <e (4a+

n=0
— O(e—(l—o)t/h). (18)
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FiG. 1. Contour lines of g = (N 4 Di-¥.

The combination of (13), (17), and (18) together
with the entirety of (% e~**F(f) dt shows that L{F(r) —
F(p)} is analytic for Re s > —}o. Thus

L{F(0)} = L{F(©O} + (),

where k(s) is analytic for Re s > —1/40. Use of (8)
and (10) completes the proof of the theorem.

We remark that some of the work involved in
proving Theorem 1 involves questions of convergence
of polynomial series near s = 0. Such questions arise
in a very similar context in the excellent book of
Kline and Kay,'® where it would seem they are not
adequately dealt with. See in particular page 309, lines
11 and 12 of Ref. 18.

III. EXAMPLE AND DISCUSSION
It is known?? that
L{et Ei (—t)} = L{_etf e—uu-—l du} —_ (log S) ,
t (1 — s)

which is analytic in the sector |arg s| < 27 except for

the logarithmic branch point at s = 0. We have, by
integration by parts of the integral N times, that

y (i — 1!

eEi(—-)=Y (—1)'(—'——ll

=1

ti
—u

® g
+ (—I)N“N!e‘ft e du

and hence |Rpy(f)| < N! ¥+ for t> 0. Since

18 M. Kline and 1. W. Kay, Electromagnetic Theory and Geometric
Optics (Interscience Publishers, Inc., New York, 1965).
19 See Ref. 9, Vol. II, p. 166.
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et Ei (—1) is integrable on (0, k) for any k > 0 the

theorem applies with =0, g, =0, and g, =
(=1 — D), i > 1, and implies that

L{e‘Ei (1)} = Iogs(zs"l) + h(s)

_ (logs)
h
== )+ (s)s

where (s) is analytic at s = 0. In this case A(s) = 0.

To show the requirement of uniformity in the
estimate of Ry in the theorem cannot be completely
dispensed with, consider f(s) = L{exp (—t})}. Res =
0 is obviously the axis of convergence of f(s). Also,
since exp (—#) > 0, s = 0 must be a singular point
of f(s).2® But exp (—2) ~ 3= 0/¢* and the theorem
would say (without the uniformity requirement) that
f(s) is analytic at s = 0. That

exp (—t}) 5% O(N (o]

for any ¢ > 0 uniformly in Nand ¢ > some T > O is
clear from Sec. I, since choosing N = t/o makes the
right side decrease as exp (—1/0).

IV. STRONG WATSON CONDITION AND
UNIQUENESS OF SINGULAR POINT

In this section we state a condition on F (to be called
strong Watson condition) under which s =0 is the
only singular point of L{F(z)} in some sector —=w —
A<args<w+ A(4>0). And we obtain the con-
tinuation of L{F(#)} through this sector.

We say that F(z) satisfies the strong Watson con-
dition if £ is regular in the set (see Fig. 2):

{z|lzl > k, largzl < 4= + 4},

where k is a non-negative number and 2 is a positive
number, and

D(A, k) =

Fe) = Za 7 + Ry(2), (19)

where
Rp(z) = O{N! (¢/|z])*} (20)

uniformly in N and z in D(4, k) for some fixed o > 0.

Watson!2-2! shows that if £(z) satisfies the strong
Watson condition, then the Borel transform of the
series (19);

a) =3 % @1)

a=o n!

can be continued in the ¢ plane so that a(¥) is regular

20 See Ref. 9, Vol. I, p. 153.
"G H Hardy, Divergent Series (Oxford University Press,
Oxford, England, 1949), pp. 191-195,
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DX, k)

Fi .2. The region D(A, k): |z} > k and jarg 2] < i + 4.

in the angle |arg ¢] < 4; and

i) = fo me““’a (i—v) dw

for |z| > k and |argz| < A. In addition Watson
(page 309 of Ref. 12) shows that
Fy=1z f e a(t) dt (22)
o

for Re z > k, the integral being absolutely convergent.
Further, for Jarg ] < 4:

a(f) = -51-—; f F(%)fu— du,

where the contour L is the boundary of the domain
D(»,1) (see Fig. 2) with 0<v < 4 and > k|t.
The contour is described from below.

For example, if () = e Ei (—?), then

(23)

a() =32

n=1

= —log (1 + 1.
We need the incomplete gamma function:
e =["ewtay ax1>0 @4
X =0 is a branch point of I'. When arg X = 0 the
path of integration is a straight line on the positive

y axis. The path is to be deformed continuously in the
region |y > 0 as arg X varies.
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We now make the following assertion.

Theorem 2: Suppose for some f§ with Re § < 1,
zPF(2) satisfies the strong Watson condition and F(z)
is integrable on [0, k] and not identically zero. (a) In
the sector largs| < = 4+ A, the continuation of
L{F(} has precisely one singularity, s = 0, and the
continuation of L{F(#)} to all points s with |arg s| < =

is given by

- © TQ—-BK(is+1)

J; ¢'F(r) dt +J; a(?) Gt o7

where k' > k and a(r) is the auxiliary function defined
by (19) and (21). (b) Further, suppose £k = 0 in the
strong Watson condition and F(f) = O(]t]") with
o> ~—1 as t— 0 in D(4, 0). Then the continuation
of L{F(1)} to all values s in the sector |arg s} < = is

given by
_at
=P f s+ t)z’”

By contour change (25) and (26) can be used to con-
tinue L{F} into the sector jarg s} < = + 4.

dt, (25)

(26)

Proof. We first give an outline of the proof, Wechoose
any k' > kand write for L{F(f)} [with £(z) = zfF(2)]:

L{F@} = L e F(f) dt
=fk’e""F(x) dt + f we‘“t'”f‘(t) dt. (27
1] B

We then substitute in the second integral of (27)
Watson’s expression (22) for F(f), justify and inter-
change order of integration for Re s > 0 and finally
obtain (25) above. The expression (25) provides the
continuation of L{F(f)}. We then, by deforming a
contour slightly, continue across the negative real
axis. Formula (26) is obtained from (25) from right
continuity (under suitable restrictions on F) in the
variable k' at k' = 0.

The first integral in (27) is an entire function of s
since F is integrable. Now consider the second integral
in (27). Substituting for £ from Watson’s result (22)
we have

f " et p) di = f me—Sftl*B{ f " etla(i) d?} dt. (28)
k' & 0

Now suppose Re s > 0. Then

f "le It“”l{ j "l ad) ai) dr

& (]

- J' ¥ gmeatyi-ge ﬂ{ f "¢ la(D) dz} dt
k' 0

=fw;a(i)£{fwe‘(‘R“’“)‘tl‘R” dt} df

_ PC2—Ref, k'(Res +1)),.
= [, 1ac e e

(29)
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We show that the last integral in (29) is convergent
for Re s > 0 and thus, by Fubini’s theorem, that the
interchange of order of integration in (28) is per-
mitted and obtain for Re s > 0and |arg s| < 4=

f eUPE( di = f a(t){ J. gty -8 dt} di

_ f ayTe=BKG D)
Q

s+D%*
We now prove the following lemma.

(30)

Lemma: If a(f) is such that {© e *“a(u) du is ab-
solutely convergent, then the last integral in (29) is
convergent for Re s > 0; the last integral in (30) is
uniformly convergent in any closed bounded region §
where |arg s| < = and s 7 0. Hence the last integral
in (30) is analytic for |arg s| < =, s 5 0.

Proof. We record an estimate of? I'(«, X): for
larg X| < %m, one has
T(e, X) = X% X1 4+ O(X™Y)]
as | X|— o0,

To prove the assertion about uniform convergence,
write (using the above estimate of I')

© 0@ = B K(s + 1)

et [ L \lla(l e
< |k k 1 0
sIHe 'f | * k'(s+t))J o+ 0 %

< e m [1+ (

)] f la()] ¥ di,

(31)
where
M, = min Re (s)
€8
and
M, = min |Im s|.
58
Res<®

To prove the last integral in (29) is convergent for
Re s > 0, replace in (31) 8 by Re f, s by Re s, M; by
Re s, and M, by |sl. This completes the proof of the
lemma.

From the absolute convergence of the integral on
the right side of (22) for Re z > k follows the absolute
convergence of

ﬂ’i—) ...f ~*ta(t) dt.

22 M, Abramowitz and 1. A. Stegun, in Handbook of Mathe-
matical Functions (U.S. Department of Commerce, Washjngton,
1964), p. 263, formula 6.5.32.
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It follows from the convergence of the last integral
in (29) that the interchange of order of integration
which occurs in (30) is justified. It follows from the
uniform convergence of (30) (see Titchmarsh?3) that
it represents the continuation of

f uoe—‘"t““ﬁ(t) dt
»

to the s plane cut along the negative axis.

Since a(r) is analytic in a sector containing the
positive axis (Watson’s result) we continue (30) over
the negative s axis by writing (30) in the form

{ J._,_ N é_m f_: J a(t)I‘(Z(s—+ﬁt):c—’(ﬂs +0), dt,

denotes

contour integration over a small semicircle about —s
contained in the sector of analyticity of a(r) (|arg f| < 4).
(This device is used in Kline and Kay.?*) This com-
pletes the proof of part (a) of the theorem.

We now consider part (b) of the theorem. We need
first to show that under the hypothesis on F we have
that

where & is a small positive number and

a(t) = o(t™*"%) (32)

for real t as t — + . To this end we express the
integral in (23) as a(f) = X2, A1), where A,(?) is
the part of the integral taken along the circular part
of the contour L, Ay(t) is the part taken along the
upper straight portion of the contour L, and Ay(t) is
that part taken along the lower straight portion. This
contour is shown in Fig. 2 if 1 is replaced by » and k
by /. We have on change of variable to u = le* that

drey le*
At) = f , F( t ) exp (Ie') d6
0=—3%7—v
and hence
16
4] < 203 ’*’") max F(’i) .
—dr—v<O<viis t

Because of the analyticity hypothesis on F, / can be
any positive number. Hence we can write

[4,()] = O((I**F) = O(t™**)

as t — + 0. For Ay(f) we have on putting u = yt x
exp [i(m + »)]:

2(0 —_ _1_ F(yet(iv-kv))evtexp [z(}w+v)] dy
2mi Jy=u1t y

3 E. C. Titchmarsh, The Theory of Functions (Oxford University
Press, Oxford, England, 1939) 2nd ed., p. 100.
4 Reference 18, pp. 288-291.
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and hence
4.0l < L max | Ere )] [Ei [ cos 3 + )|
2 Hi<y<ow
= O(t™7#).
Similarly, Aa(?) = O(t—**) as t— + 0. From this
we have the estimate (32)..
For k' > 0 we have for large R:

ﬂ k'(s + t))
‘ J () s+ 1 * a
Sf‘” la(t)l re - ﬁzl_c (s + ) it
R I(s + 0*7)

@ 1
=0 I f ~Yyl=f dyf ————— dt}
{fR | | k’(s+t)e y yi I(s + %74
(33)

In the y integral in (33) put y=u + k'(s + 1).
The last expression in (33) becomes

= _Jret|
OUR I(s + 6**

X f e—[u+k’(s+t)][u + kl(s + t)]l—ﬂ du
0

dt}
[ I~

Nt

x f " llu + K(s + O du dt}
0

P

=4gm+wﬁ
xJ:oe“"[lu + k'(s + DI du dt}

-o|[ o) -ofgd

since « > —1 and Re § < 1. The third equality is not
trivial. From the above follows the uniform conver-
gence in k' > 0 of the second integral in (25).

From the uniform convergence it follows that the
second integral in (25) is right-continuous at k' = 0.
Hence (25) holds for k' = 0 under the hypothesis on
F given in part (b) of Theorem 2. This gives (26).

Alternatively, one could use the estimate (32) of a(?)
and apply Theorem 4a on page 334 of Widder’s book?2®
to obtain (26). This completes the proof of the theorem.

To show there exist F for which (25) is appropriate,
but (26) is not, consider F(z) = 1/(z — b) where Re b >
0. Choose k = 2 |b|. Then a(f) = (exp (bt) — 1)/band
(26) fails to converge for this a(z).

3 D. V. Widder, The Laplace Transform (Princeton University
Press, Princeton, N.J., 1946).
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More generally, if F(z) has any singularity in the
right half of the z plane, (26) fails to converge. Now
suppose F(z) is analytic in the right half of the z plane
and has only a finite number of singularities on the
imaginary axis, say at z, (k = 1,2,---, n). Suppose
FZ)=0(z,—z|*) as z—z, (Rez>0). If z, =0
as above, we require oy, > —1. If z; # 0, then if we
require a > —3, (26) will still converge; i.e., (26) will
converge under hypotheses weaker than stated in
Theorem 2.

We remark that Theorem 2 could perhaps be general-
ized by using Nevanlinna’s generalization of Watson’s
result.?® For example, perhaps 4 could be zero. For a
review of Nevanlinna’s paper, see Ref. 27.

V. EXAMPLES OF THEOREM II

In Sec. II1, F(f) = e' Ei (—f) was shown to satisfy
Theorem 1. It is now shown?®® that it also satisfies
Theorem 2 with k equal to zero and A < =, ie.,
[t] > 0, |arg t] < 3w. One way to do this is to express
the exponential integral in terms of the confluent
hypergeometric function as*

—e'Ei(—0) =Y, 1;1),

and then the result is a special case of the same
_property for ¥'(a, c; t), at least for Re @ > 0. Instead
we demonstrate the result directly, using the form of
the remainder from Sec. III,

U

e
du.
LN+

Ry(t) = (—D)V+INT etfw

If = < argt < 3w, then choose the contour shown
in Fig. 3(a), which is a straight line starting at 4 = ¢,
and passing through u = i [¢]. (Closing the contour at
infinity contributes nothing.) This is equivalent to the
change of variable u = t + ye®, with 6 = } arg ¢t —
}#7, and the real variable y ranging from 0 to < oco.
Examination of Fig. 3(a) shows that the minimum
value of |#| on the contour is |¢| cos 6, and therefore

IRy()] < N1eRet fme—Rete—ycosa dy
N |t|N+1(COS e)N+1 o
or
NI

Ry(D] <L .

RO < ¥ cos (g arg 1 — 1P
If 0 < arg ¢t < 4, then choose § = 0 [see Fig. 3(b)],
and the cosine factor in Eq. (34) is replaced by unity.
On this horizontal contour |u| > |t|. For argt <0
all contours are reflected in the real u axis. The

(34)

26 F, Nevanlinna, Ann. Acad. Sci. Fenn. (A) 12, 1 (1916).

7 L. Bieberbach, Fortschritte der Mathematik 46, 1463 (1916).

28 In Ref. 12 it was shown that ! Ei (—1) satisfies the strong Watson
condition for |arg | < 7. We extend this result to .
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/’:}q t
1
(a) (b)
Fic. 3. Contours of integration in the u plane which establish
that et Ei (—7) = —et j“’ e~*u~! du satisfies strong Watson condi-

tions for |¢| > 0, |arg ] < 3. (@) §7 < argt < §m. O is chosen to
be (3 argt — }#). The minimum value of |u| on the contour is
[t| cos 8. (b) 0 < arg ¢ < }w. B is chosen to be zero, i.e., the contour
is horizontal. The contours are reflected in the real u axis if arg r < 0.

result, therefore, is that

IRN(D)] < ANt ™|tV
where 4 =0 =sec}l, for |t >0 and |args] <
w4+ A If |larg t| £ 4w, A = ¢ = 1. Evidently, A must
be less than =,

According to the first part of Theorem 2, the Laplace
transform of e'Ei(—f) has only one singularity,
s = 0, for |arg s] < = + 4 < 2m. Indeed log s/(1 — s),
which is the Laplace transform in question, does have
this property. According to the second part of
Theorem 2, the Laplace transform just given is equal
to

*_a®

o (s +6)?
for |arg s| < =, where a(f) was shown in Sec. IV for
this example to equal —log (1 + ¢), and the principal
value is to be used. Integration by parts gives

_J‘”log(1+t)dt
o (s+ 0P

___1°_g(Li_f_)°°_f°°____1_._d,
s+t b Jo(s+D1+10)

-0+ 1 J"”[l _ l]dt
l—sJo 14t s+t

confirming the result.
For the confluent hypergeometric function

weid
¥(a, c; x) = F—:a—) L L+ 1 de (35)

with Rea > 0, |¢| < 7, and |¢ + arg x| < }w, the
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validity of the strong Watson condition can be
demonstrated for |x| > 0 and |arg x| < $7 + 4, with

A < =, by expanding
(n) 0
s =+t =3 D
n=0 N.
tN+1 1
+ 57 ), A = 9T ).

The result (which we do not prove here) is

1 % 'M+14a—c)
I'(a) s50 M!T(1 +a—c¢)
M + a)

(—x)™
where it can be shown that there exist constants 4 and
o independent of N and x such that

AN! V!

|x|N+1 ’

x*¥(a, c; x) =

X + Ry(a, ¢, x), (36)

IRyl < (37N
and just as in the example of the exponential integral
A and o become infinite as 1 approaches 7. 4 and ¢
depend upon a and ¢, but can be chosen to be inde-
pendent of them so long as |a| and [c| are bounded.

VI. GENERALIZATION AND EXAMPLE
FROM SCATTERING THEORY

We now return to the problem mentioned in the
Introduction, which is not a Laplace transform, but
is only a slight generalization from the standpoint of
the theorems in this paper. Changing from the variable

s to k = 3(u — ), the function under consideration is
Ay (k) = f e H(k, r) dr (38)
where °
H(k, r) = r e ® [rlt e d(a, c; 2k, (39)
with

a=L+ 1+ Me*2k and c¢=2L + 2.

As mentioned in the Introduction, H(k, r) is an entire
function of k. The aim is to show that 4,(k) has only
one singularity for —47 < argk < 47, namely at
k = }p, provided one cuts the k plane from there to
+ o, and further to find the singular part of the
function in a neighborhood of that point. k¥ =0
requires special consideration which we defer until
later.

The portion of the integral (38) from r = 0 to any
fixed R is an entire function of k, E(k), and therefore
we are led to consider

B = 400 — EG) = [ e, ry dr. (40

D(a, c; 2kr) =

W. A. BEYER AND L. HELLER

For k # 0, use the relation®®
(o)
T(c ~ a)
F(C) i€la—c)m 2k
4 —X g V(¢ — a, c; —2kr), (41)
I'(a )

where the single-valued function @ has been expressed
in terms of the multivalued functions ¥, and one must
choose

e““"V(a, c; 2kr)

arg (—2kr) = arg (2kr) — em (42)

with € = +1 everywhere, or ¢ = —1 everywhere. In
Ref. 1 € is taken as +1 if 0 < arg(2kr) < =, and
e = —1 if —m < arg(2kr) <0, but either one of
those relations can be continued in arg (2kr) indefi-
nitely, with € held fixed. We understand arg (2kr) to
be arg k + o, with ¢ = argr.

From Egs. (39), (40), and (41),

‘ B(k) = By(k) + By(k) + By(k), (43)
where
Fz(c) 2i€
B k - cam
1(k) I'(c — a)
N J\aoe_,,re—ZkrﬁIfH\Fz(a’ c; 2kr) dr,
R
2
B2(k) — 2 (C) te(2a—c) 7
I'(c — a)['(a)
X f me""r”f“‘l’(a, ¢;2kr)¥(c — a,c; —2kr)dr,
R
(44)
and
Ba(k) F (C) 2z£(a—c)1r

)
XJ“” HRTRIA (o g oo —2kr) dr.
R

Since all three integrands as well as the multiplying
functions outside the integrals are analytic functions of
k for all finite k (except k = 0), the functions B,(k)
will be analytic in any region of k& for which the
integrals converge uniformly. If an arbitrarily small
region containing k = 0 is avoided, then one can
show directly from (35) that the ¥ functions can be
bounded uniformly in k by a constant multiplied by
a fixed power of ||, for all r on the path of integration,
provided: largk + o £ $7 + 2 < §wfor¥(a, ¢c; 2kr);
and
largk + 0 —en| K v+ A < 37

for¥(c — a, ¢; —2kr).
To begin, consider region (D of the k plane:

29 Reference 1, p. 259, formula (7).
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O0<Rek<Liu—96, 6>0, Imk >0, but k 0.
See Fig. 4(a). Choose € = +1. With ¢ = 0in all three
integrals of (44), one has

larg k + df

both less than 37, and the exponentials in the
integrands are all decreasing. All three integrals
converge uniformly in k, and therefore represent
analytic functions of k in this region.

We want to continue B, + B, 4 B; beyond region
(. For B, and B, the expressions in (44) show that
these two functions have no singularities for —47 <
arg k < 3w It is also clear from (44) that By(k) is not
analytic at k = }u since the exponential is equal to
unity and differentiating with respect to k& enough
times must lead to a divergent integral. To continue B,
around k = }u, first rotate the path of integration
[Fig. 4(b)] in the r plane. See Fig. 4(c). In region (D of
the k plane any value of ¢ may be used such that
0 < o < 47. By taking o almost 4=, one effects the
continuation of By clockwise around k = }u into region
@ (almost to the real k axis). A further rotation of
the path of integration continues B, clockwise across
the real k axis and this is sufficient for the dispersion
relation application, but this process can be repeated
for more than one sheet around k& = 4, finally being
stopped by the requirement on |argk + ¢ — en].

To continue B; + B, + B, counterclockwise around
k = }pu, start over in region (1), this time with e = —1.
The reasoning goes just as before with the sign of all
arguments changed.

One proves that Ay(k) is analytic at k =0 by
showing from its powers series that ®(a, c; 2kr) is
bounded uniformly in & for |k| < k,, by a constant
multiplying exp (okor), with ¢ another constant. For
sufficiently small k, the integral (38) is uniformly
convergent.

To find the singular part of 4,(k) in a neighborhood
of k = }u requires a generalization of Theorem 1 with
a similar proof.

and |argk + o — en|

Theorem 3: Suppose there exists a neighborhood of
s = 0 in which: (i) F(s, 7) is an analytic function of s
for all # > k; (ii)
Y afs)

F(s, 1) = t"’("[z

i=0

+ Ry, t)], t>k

ti

where a,(s) and f(s) are analytic functions of s, with
Re f(s) < 1; and (jii)
Ry(s, t) = O[N! ¥/t +]

uniformly in s (in the neighborhood), N, and ¢ > k.
Then if f(s) is not an integer constant, one has for
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2 etF(s, 1) dt:

sﬁ(”‘l[ i a1 —m — ﬂ(s))s"‘:l + h(s).

m=0

If f(s) is an integer constant, then

f e *'F(s, t) dt
T

is given by

st gai(s)I‘(l —i—p)st
© (_l)a
ZG-0D

In both cases A(s) is analytic at s = 0. T is a fixed
positive constant.

+ (log s)[ a,-_,,(s)s‘-l] + h(s).

Proof. One constructs

a(s, u) = > a,(s)u"™/m!
m=0
which is uniformly convergent in s for |u| < 1/e.
Define

T
e ™a(s, u) du

Fi,p = tl‘”‘s’J

0

which is an analytic function of s, and for Re s > 0:
f(s) -=—f e_“F(s’ 1) dt
[
=12 - ﬂ(s))f a(s, u)(u + s)ﬁ(s)—z du.
0

The remainder of the proof proceeds as in Theorem 1.
The hypotheses of Theorem 3 are met by the integral

Fic. 4. (a) The k plane
showing some of the regions of
analyticity of the functions
B{k) which are discussed in
Sec. VL. (b) The original path
of integration in the r plane
for Egs. (44). (c) A rotated

path of integration in the r = 7z
plane which effects the analytic
continuation of B(k) clock-
wise around k = }u into {a)
region (2) of the k plane.
A
R - R

(b) (¢}
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for By in (44), if one puts s = u — 2k, in a neighbor-
hood of k=3}u (or s=0) and therefore the
asymptotic series for 'V, (36), can be used to determine
the singular part of By(k) and consequently of 4,(k).?

VIL. REMAINDER ESTIMATES

Estimates on the remainder term in terms of z and
N (complete bounds) of an asymptotic expansion are
required to determine if the expansion satisfies a
Watson condition. We are not aware of any tables of
such estimates. There are investigations made by
Watson,'*3® Olver®:®23 and Olver and Stenger.®
In this section we survey these estimates.

Watson®® has analyzed an asymptotic expansion of
logT'(z + a). If0 < a L 1,|z] > 1, |arg z| < = — 20,
then it is shown that

logTz4+a)—(z+a—Hlogz+z
N
=3 224 Ry(2),

n=0 Z
where

IRM(2)] < KT(N + DI + 8) esc (36)/2m]Y 2|77

for some K and for fixed § > 0. The case of arbitrary
a is also discussed and is slightly more complicated.
It is not reproduced here.

For the G function of Barnes,

G(x + 1) = [exp {§x log }m — Ix(x + 1) — $yx®}]
x T1 (1 + E) exp (—x + n7x%
n=1 n
and for |z| > 1, |arg z] < 7 — 26, it is shown®® that

logG(z+a)— &% —#z+a~—1)log2w + log 4
—¥Hez+a—-12— Hilogz+ 322+ (a— 1)z

possesses an asymptotic expansion 3 _ a,/z" + Ry(2)
having the same condition as given above for the
gamma function. Here A is certain definite constant
having numerical value 1.28242713 - - - and y is Euler’s
number. The interest in Barnes’ G function arises from
the fact that it satisfies the relation G(z + 1) =
TI'(z2)G(z) with G(1) = 1.

Watson® also considered the Mittag-Leffler func-

30 G. N, Watson, Quart. J, Pure Appl. Math. 43, 63 (1912).

8 F, W, J. Olver, Asymprotic Solutions of Differential Equations,
C. 1H. Wilcox, Ed. (John Wiley & Sons, Inc.,, New York, 1964),
p. 163,

3 B, W. J. Olver, J. Soc. Ind. Appl. Math. B2, 225 (1965).

38 F. W. J. Olver, Error in Digital Computation, 1. B. Rall, Ed.
(John Wiley & Sons, Inc., New York, 1965), p. 65.

bl F) W. J. Olver and F. Stenger, J. Soc. Ind. Appl. Math.B2,244
(1965).
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(b) Ryoo<corg Z<n

(¢) Ry, Mz € arg Z <% (d) Ry . To<arg Z s

Fia. 5. Regions for bounds on remainder terms for the
Whittaker functions Wi, m(2).

tion E,(x) defined by

z?’-‘.
E() néo T(an + 1) ’
where « > 0. (This is an entire function satisfying a
Watson condition.)

Olver® has considered the Whittaker functions
Wim (or, equally, the confluent hypergeometric
functions). The Whittaker functions have important
specializations: Bessel functions, parabolic cylinder
functions, the exponential integral, sine and cosine
integrals, Fresnel integrals, error function, and
incomplete gamma functions.

Put K =2k and let R,, R,, R;, and R, be the
regions shown in Fig. 5. The bounding curve in Ry is
the parabola x% + 4Ky > 4K2 R, (i = 2, 3, 4) is the
set of complex values conjugate to R;. From Olver’s
results it follows that there exist K and N(k, m) so that
for n > N(k, m):

lea(2)] < Kn!fz|™

for zin R\ R, U R, and (with § = argz and p a
certain angle dependent on z):

les)| < Rnlese™ (6 — @) |z

for z in Ry U R,. This result overlaps that given in
Sec. V. concerning the confluent hypergeometric
functions.

Additional results on complete error bounds on
many asymptotic expansions are derived by Olvers—3?
and Olver and Stenger.® Generally the bounds are
not directly in the form required for applications
discussed in this paper but no doubt can easily be put
in the Watson form we use. Older results due on
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Hankel, Stieltjes, Weber, and Schlifli are given in
Watson. 3

Some general theorems relating to the calculation of
complete bounds on asymptotic expansions are given
by Watson.!? In particular, the asymptotic expansion
of the product of two functions is investigated. In
addition, results are given on complete bounds on
remainder terms of an asymptotic expansion of a
function ®{f(z)} where certain things are known
about ® and where complete bounds are known on
remainder terms of an asymptotic expansion of f(z).

Watson!? investigates the asymptotic expansion in
negative powers of z of Laplace transforms of func-
tions g(t) defined by series @(f) = 32, a;t'/i! where
la;] < Ai!o’. In addition, it is assumed that ¢(f) has
no singularities in the sector |argf| < 4 and in this
sector |@(f)] < Kexp{y |t[} where K and y are
constants. Watson then shows that if

F(z) = zﬁwe_“gv(t) dt,

then F(z) or its analytic continuation has the form
Na
> ‘": + Rp(2)
n=0 2

for largz]| < 47w + A — 6 (6 > 0) and
Re{zexp(—i)} >y + 1
where |[v] < 1 — 8; Rp(2) satisﬁgs:

IRM(2)| < B(o csc )TN + 1) |27,

where oy is any number >o. B does not depend on N
or z.

It is possible, but apparently not completely trivial,
to carry out an analysis similar to Watson’s analysis
for Laplace transforms of the form

f et o(t) dt,
0

where § is an arbitrary complex .number and ¢(r)
satisfies the above hypotheses. This case includes the
confluent hypergeometric functions discussed in Sec.
V and Sec. VL.

This result by Watson together with Watson’s work
discussed at the beginning of Sec. IV yield the fol-
lowing, which shows the equivalence between functions
with asymptotic expansions satisfying a strong
Watson condition and functions which are Laplace

38 G. N. Watson, Theory of Bessel Functions (Cambridge Univer-
sity Press, Cambridge, England, 1950), 4th ed., pp. 205-220.
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transforms of certainanalyticfunctions. More precisely,

let 2 > 0 and k > 0 be given. Then f(z) is regular in
D(A, k)={z||z]> k, larg z| < 4 + A}andin D(4, k),

@) =3 oz + R,(@),

with R,(z) = O{'(n)(e/z)**} for some o > 0 uni-

formly in n, and z € D(4, k) if and only if there exists

@(f) regular in {|f| <oy} U {|argt < 4}, and
O(exp k |7| ) for some o, > 0, such that for Rez > k:

f(@= zﬁwe‘"tp(t) dt.

Perhaps a similar correspondence could be made
between functions with asymptotic expansions sat-
isfying a weak Watson condition and a different
class of Laplace transforms.

VIII. PROPOSAL FOR FURTHER RESEARCH

Nevanlinna®-2 obtains the following result (a
generalization of Watson’s result): Suppose F(z) is an
analytic function, which for Rez* > y*, » >0,
k > 0 is regular and can be represented there by a
series ) °a [z" and for arbitrarily small positive £ and
each p’ > p satisfies in Re z*¥ > 9* + £ the inequality

n—1

F(z) — X a,/z"

< T 2 1) m —-n

(i +1)em
for sufficiently large values of n. Then the function
a(z) defined by

—_ ___av__ vk
A= 2 kT

is analytic in |z] < 1/p¥, can be continued along the
positive real axis, and for Re z¥ > y*:

F(z) = z"fwa(t)e_’k' dt.

0

Consider now the Laplace transform of F(z). Pro-
ceeding formally we have

£(s) = J; "R @) dt

=fwe"‘tk{fwa(u)e"‘k“ du} dt
0 0

= J a(u) du J fhg—tsttut®) g

0 0

- 1 , .
- L () o B du, (49)
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where What information about the singularities of f(s) can
© T+ (1/k)n] 1 be determined from (45)?
== re———— [0<-<K1
8 = 2" =511y ( <3S )

is a function discussed by Barnes:*-3 For k = 2, g,(2) ACKNOWLEDGMENTS

is expressible as a confluent hypergeometric function.?®
The authors thank Dr. D. Liberman for many
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36 E, W. Barnes, Phil. Trans. Roy. Soc. London A206, 283 (1906).

37 E. W. Barnes, Cambridge Phil. Trans. 20, 215-232 (1906).

38 Bateman Manuscript Project, Tables of Integral Transforms,
A. Erdélyi, Ed. (McGraw-Hill Book Company, Inc., New York,
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In this paper, a method is developed to compute an inverse overlap matrix based on a linked cluster
expansion of a determinant, The inverse is éxpanded in terms of cluster integrals represented by diagrams
and a recurrence relation for generation of all diagrams required is found. Thus the computation of an
exact inverse overlap matrix is reduced to solving the recurrence equations self-consistently. An approach
for solving the equations is suggested and bounds for errors accompanying this procedure are calculated.

The method is applied to the hydrogen lattice.

I. INTRODUCTION

HENEVER atomic functions are used as bases
YV in calculating the electronic structure of solids,
one has to deal with the difficult problem of calculating
the inverse overlap matrices.1”3
The principle of the calculation is simple; that is,
the overlap matrix S is transformed to diagonal form
§’, inverted and transformed back to the original
representation. The inverse is then given by a Fourier
transform of (S’)%, an integral, because the trans-
formation used is just a Fourier transformation.
Although, for a linear chain, this integral may be
converted into a contour integral and evaluated in a
closed form®# it is doubtful if such a technique can be
extended to the two- and three-dimensional cases.
Gilbert® has discussed difficulties associated with this
approach. Calais and Appel® have avoided the
difficulties by carrying out the integration numerically.

* Based on work performed under the auspices of the U.S.
Atomic Energy Commission.

1 P. O. Léwdin, J. Chem. Phys. 18, 365 (1950).

2 P. O, Lowdin, Advan. Phys. 5, 1 (1956).

3 T. L. Gilbert, J. Math. Phys. 3, 107 (1962).

4 Also see the exact methods of calculating cyclic matrices by
P. O. Lowdin, R. Pauncz, and J. de Heer, J. Math. Phys. 1, 461
(1960); P. B. Abraham and G. Weiss, ibid. 3, 340 (1962).

5 J. L. Calais and K. Appel, J. Math. Phys. 5, 1001 (1964).

Lack of knowledge on singularities involved in the
integrand, however, makes this approach somewhat
uncertain. There might be possibilities that the
denominator of the integrand becomes vanishingly
small.

The expansion method? used by Lowdin converges
very slowly and is not considered very useful for
practical purposes. Another approach used by
Lowdin® is to solve directly a set of linear equations
which defines the inverse. A numerical calculation
can be carried out only if the infinite set of equations
is replaced by a set of a small number, say Q, of
equations. Unfortunately, there has been no way to
estimate the error that may accompany the trun-
cation.

In this paper, we develop a linked cluster expansion
for computing an inverse overlap matrix; the method
is a generalization of Cauchy’s expansion of a deter-
minant” and also a simplification of the linked cluster
expansion® proposed previously for computing the

8 P. O. Léwdin, J. Chem. Phys. 19, 1579 (1951).

7 See, for instance, A. C. Aitken, Determinants and Matrices
(Oliver and Boyd Ltd., Edinburgh, 1959), Chap. IV,

8 T. Arai, Phys. Rev. 134, A824 (1964); Progr. Theoret. Phys.
(Kyoto) 36, 473 (1966). Henceforth, the first paper is referred to
as I and the second as II.
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Heitler-London energy. The inverse is then expanded
in terms of connected diagrams and a recurrence
relation for generating all possible diagrams is found.
Thus the computation of the inverse is reduced to
solving the recurrence relation self-consistently. Since
the recurrence relation is written as the set of linear
equations that defines the inverse overlap matrix, the
method thus developed is formally equivalent to
Lowdin’s second approach. In the course of the
derivation, however, it becomes clear as to how the
inverse should behave and what kind of approxima-
tion is involved in the truncation used. Thus bounds
for errors accompanying the approximation can be
calculated and the results, in turn, ensure the accuracy
of the method developed here.

IL. INVERSE OVERLAP MATRIX
Let R, be the positional vector of the hth atom in
a lattice composed of a large number N of atoms and
denote by ¢,(r — R,) the one-electron wavefunction
localized at the hAth atom. We further impose the
periodic boundary conditions that

¢n(r - Rh + Ai) = ‘Pn(" - Rh)’ for i= X, y, z,

M

where A, is the length of the lattice in the i direction.

The overlap matrix is defined as the matrix whose
hl element S, is given by the overlap integral

Smammsf%r—Rm%v—&Mn

and the inverse S~ is determined by

N
kg(s_l)""s"‘ = 0y;- (3)

Because of the periodic boundary condition (1),
(5™, is a function of the vector R, ;, = R, — R,
connecting atom k to atom 4 and can be denoted by
(S, Hence the inverse S~ is in principle deter-
mined by solving the N linear equations for a fixed 4:

N
S RIS pg = 8 for I=1,2,+-,N. (4
k=1

Since it is not possible to solve these equations for
.the limit N — oo, Lowdin® has extended the summa-
tion up to the 12th neighbors starting from atom 4
and neglects higher-order terms in overlaps without
estimating the possible error associated with this
truncation.

II. CLUSTER EXPANSION AND THE
RECURRENCE RELATION FOR THE INVERSE

The inverse S introduced in (3) is formally
written as adj S, the adjugate of the overlap matrix S,
divided by the determinant |S] of S:

S~ = adj S/|S|.

2

(&)
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Since adj S is the N X N matrix whose A/ element is
given by the cofactor |S[/|A]} of S, = (I|k) in |S],
we find that
(S = IST [A1I/ISI. ©
The cofactor |S[/|h]| is the determinant of the
(N — 1) x (N — 1) matrix S[/|k] obtained from S
by suppressing the /th row and the Ath column and
by attaching the proper sign (—1)!"%,
We want to calculate the quotient on the

right of (6) by expanding the determinants suc-

cessively in terms of cofactors, and hence it is con-
venient to introduce smaller submatrices S[/,/, | hihs),
S[h4, - l hyhy - - -], etc. obtained from S[I; | h] by
deletlng its rows and columns one by one. For
instance, the (N — r) X (N — r) matrix
Sty .- Ir—llr I hyv-- hr—lhr]
is generated from the (N —r+ )X (N—r+1)
matrix [l -+ L,y | by - + - h,_4] by deleting the “/,th”
row and the “A,th” column® and by inserting a proper
sign so that |S[/; - - L. | A - - k]| is the cofactor of
Si,, 0 ISth -4y l hy -« b 4]l
The expansion of a determinant |.S| in terms of its
cofactors |S[k|h]|

IS| = % Sin IS[k|R] = |S[h|h]] +k§h (k|h)|S[k]|h])

)
can be extended to the determinant |S[/ |4]], yielding
the result

IWMW4Hmwmm+ymmeMLs

where |S[lk|hl]] is the cofactor of Sy, in |S[I|A].
Let us now introduce the notation:
FlIR) = (S, = ST/ |A11/1S] &)

and generalize it to quotients of smaller determinants
as follows:

Fh1 s h,[l lhr+1]

= |SThy -~ hd | by hohy ) [|SThy - -

'hrlhln'hrlly

(10)
where the indices A, - - - A, indicate that the Ath, - - -,
hth rows and columns are suppressed in both deter-
minants. By multiplying (7) and (8) by |S|™ and by
using the above notation, we find that

Flhlh} =1 —kgh' (k |h)F[k|h], (11)

—F[l|h] = (h |DF,[h|AIFTL|I]
+ 7 (k |DF[k|[RIFI]I.  (12)
® The I,th row and the A,th column of S[f -/, |#y - hry

mean, respectively, those corresponding to the Ith row and the
h,th column of the original matrix S.



1020

Flnm = 14 - 0 + (=13 V +1-114 O 4
+ (-4 @ + (=14 Q + (-1)*

Fi1G. 1. The expansion of Ffhlhl. An open dot
indicates atom k.

4ree

The second term on the right of (12), for instance, is
obtained as follows.

|SCk|IN\ST = —{(|STRI|RII/IST [N} x {ISUIII/NST
= —F,[k|nF|N
since, by definition of cofactors,
|SUk|Rll| = —|STkI|AT]].

The function F, ..., [I|h] will also satisfy identities
of the same forms as (11) and (12) except that the
summations do not include atoms /,---, /. This
shows that the relations (11) and (12) are recurrence
relations for the expansion of F[I|k]in powers of the
overlap integrals; the expansion described here is, in
fact, a generalization of Cauchy’s expansion of a
determinant.’

The manipulation is simplified by the use of
diagrams. For example, we list series of diagrams
appearing in the expansions of F[k|h] and F[I|#] in
Figs. 1 and 2, respectively. Here a straight line starting
from / and ending at 4 represents the overlap integral
(h|ly; and therefore the value of a diagram will
decay exponentially when the length of the line
increases. A solid dot indicates that the sum over all
sites in the lattice should be taken under the provision
that dots in a diagram are all distinct. An open dot is
a fixed point 4 or /.

All diagrams necessary are constructed according to
the following rules.

(a) The first path starts from / in the case of F[/ [h}
and 4 in the case of F[h|h] and ends at 4 in both cases.
A path never goes through a point more than once.

(b) Terms in higher orders are obtained by adding
more rings. A ring starts from a point on paths
drawn previously in the diagram, and always comes
back to the starting point.

(c) After completing a diagram, attach sign (—1)***
to the diagram, where ¢ is the number of rings in the
diagram and s the number of electron permutations
required in drawing the diagram.

~rirn] = I PP > + -t :I -
+ (-1t f:'u-n' L>H-u)” >::> P

Fi16. 2. The expansion of Fi|A]. The lines start
from atom 4 and end at atom /. -
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FiG. 3. Therecurrence relation for gen-
eration of diagrams.

The factor (—1)t comes from the minus sign of the
second term on the right of (11) and (—1)° appears
because of the minus sign on the left of (12). The num-
ber s is obtained as follows. Count the number of
dots involved in each path excluding those at the
origin and the end of the path. The sum of the numbers
thus obtained in a diagram is 5. The method (b)
implies that the diagrams obtained are all connected.

Unless overlap integrals are all small, however, the
convergence of the series is so slow that the direct
summation of the series becomes impractical. Instead,
use of the recurrence relation shown in Fig. 3 is more
convenient, since the relation generates all diagrams for
F[I|h] except those which have rings starting from
point 4. For instance, the second, third, and fourth
diagrams in Fig. 2 can be generated by inserting the
expression on the right of the recurrence relation into
the second term of the same expression. By multiplying
diagrams thus obtained by those for F[h|h], we
obtain all diagrams for F[/|k]. Hence, the quantity
represented by a double line on the left of the re-
currence relation is —FJ/ [h]/F[k{h]. We denote it
by f(h <« I). The recurrence relation is then written as

fh<D = (| — Ek"f(h —kxk|h, hs1, (13)
where

f(h<1y= —F[l|h]/Flhlh) = —|SU|R/ISTA|AY. (14)

The relations (13) and (14) are nothing but a
transformation of (3) and (4). However, it has become
clear that f(/ < I) is a well-behaved function given by
the sum of connected diagrams which links two points
{ and % and hence the value will be bounded and
decrease when the distance between / and 4 increases
as long as the inverse exists.1

Since the overlap integral (k|/) decreases expo-
nentially with increasing distance R, ; between k and
1, the summation on the right of (13) converges and we
‘need to consider only k’s within the range |R,_;| < |R],
where the overlap integral Sp = [ *(r)e(r — R) dr
practically vanishes. This implies that the functions
Jf(h < k) needed in the summation are in the ranges

[IRE — [Ryil| < [Rpsl < [IRI + [Ryl| (15

because of the vector relation R, ;, = R, ; + R, ,.

10 Even if the expansions of the determinants |F[/|h]| described
in Figs. 1 and 2 diverge, the values of the determinants will be finite
and the present method is still applicable to this case because an
infinite number of terms appearing in the expansion of f(h <« 1) is
included correctly in the calculation. See the discussion in Sec. IV,
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To compute f(h<-1I) for small distances |R, |,
therefore, we need to know the value of f(h k) in
the range |R, ,| < |R| since |R,_;| < |R]. However, to
estimate the value of f(h « k) for which |R,_,| =~ |R|,
we have to supply f(h< k') in the range |R,_,| <
2 |R| and so on. Thus the linear equations (13) are
related to an infinitely large number of variables
f(h < 1), but the difficulty may be avoided by solving
the equations iteratively. In the following section, we
describe a method to do this and estimate the error.

In case ¢,(r — R)is an S function, the Eq. (13) can
be simplified as follows. Let k;,k,,- -, k, be the
Kth neighbors of atom /4, which have the common
overlap integral Sx = (h|k,) as well as the common
function fi == f(h < k;). Then the summation on the
right of (13) can be split into two; the first one
S K=const extends over all sites kK which are the Kth
neighbors of atom 4 and the second one over all K;
that is,

fo=S8.— %ALKfK’ (16)
where
K=const
Arg = ; (k]l). an

IV. A METHOD OF SOLVING THE LINEAR
EQUATIONS AND ITS ACCURACY

In this section, we describe a method of solving the
set of simultaneous equations (16) and discuss its
accuracy. Under the matrix representation, (16) is
written as

a1+ d8f=5s, 18)

where f and S are vectors whose elements fx and Sk
are arranged in order of K while the matrix A is
composed of Ay .

As is discussed in Sec. III, the value of fx decreases
with increasing K. Let us assume, as the first approxi-
mation, that fx = 0 for K > Q. This corresponds to
generation of only a certain type of diagrams; but,
within this limitation, an infinite number of all possible
diagrams are generated and summed correctly by
means of the recurrence relation in Fig. 3. The certain
type of diagrams here means all possible diagrams, in
which the distance between any pair of atoms that are
connected by two lines is less than Ry, where Ry is
the distance between the Qth neighbors. The infinite
set of Eq. (18) is then truncated to a set of @ simul-
taneous equations!

A? + A = S (19)

11 Notations such as A{® are used to represent Q¢ X Q matrices
or (-dimensional vectors and, by A,, the same matrix as A{® is
given in the whole space by adding zeros.
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Although the solution f{¢’ is computed without
difficulty as long as Q < 100, it is not possible to
increase Q indefinitely. In certain cases, however, the
difference between (18) and (19) can be included into
the calculation correctly by using the series expansion
described in Sec. IVA. Even if the expansion method
does not work, however, the first few elements of
f{©’ obtained by solving (19) become exact anyway,
as is discussed in Sec. IVB.

A. Exact Expansion for f; (An Iteration Method)

Let A, and S, be the remainders of A and S; that is,
A, =A—Ajand S, =S — S,, respectively. Use of
the algebraic identity

1+ A =010+ A)[1+ A+ A)tA,]

in the original Eq. (18) yields that

A+Df=1+A)'S=H{,, (20)
where the notations
T=(0+ A4, 1)
f,=1,+S, 22)
are used. The exact solution f is then expanded as
f=0+17,
=A0=-T4+T— (=D 4+ R, (23)
and the remainder is given by
R1, = (DA + T)'T,. (24)

The expansion (23) is equivalent to solving (18)
self-consistently by an iteration method. Inserting
(19) and (22) into (18), we find that the difference
Af between f and f, is given by

Af=f—f =—Tf (25)

If the correction term —Tf is calculated by using f,,

the second term in the expansion (23) is obtained.

Use of f, + Af thus obtained in —Tf yields the third

term and so on. This process, of course, recovers the

type of diagrams which are omitted in solving (19).
If the quantity

lmax = max sz ITKLl (26)
L

is less than one, the elements of vector R f, are
bounded as
(R fImax < (1 = Amax) " AMhoxfmax 27

(28)

Hence, the remainder (R,f,)max vanishes for large n,

where
Jmax = max of | fx|.
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justifying the expansion (or iteration) procedure
described above.
The bound for Amay is given by

Amax < max Ofg QA + Akl
X max ofg [(ADkzl- (29)

Since (A,)x 1, defined by (17) is a sum of a finite number
of overlap integrals connecting K and L and decays
exponentially as the distance K and L increases, the
sum Y7 |(A)gzl is always finite. The quantity
> (1 + Ay x| involves a finite number of terms
and the upper bound pmax is found to be of the order
of one in our examples in Sec. V. Therefore, the
condition for (R, f,)max — 0 is fulfilled if

1
max OfE |(A1)KL| < > (30)
L Hmax
where
Pmax = max of g A + Akl (31)

B. Asymptotic Expansion for

If overlap integrals are large and the condition (30)
is not satisfied, the bound (R f)max for the remainder
thus computed will increase indefinitely for large n.
In the following, it is shown that the method can still
be used as an asymptotic expansion of fx .

From the definitions of T and A, , it is found that the
matrix ‘T has the structure as shown on the left of
Fig. 4 and the first Q x Q elements, Tx; for K,
L < Q, vanish exactly. Let us now redivide T as on
the right of Fig. 4 and compute the quantity defined by

E%lTKLI; for K = 1’2""’Q, <Q,
(32

*r

o
ELE |Tgzl, forK > Q' + 1.
=1

As (1 + Ag)~* has only a finite number of nonvanish-
ing off-diagonal elements and is nearly equal to a unit
matrix, the quantities Tx; may be estimated by
Umax(By)xz and considered as proportional to the
overlap integral connecting K and L. Since nonvanish-
ing elements Tx; appearing in the summations in

-—Q— ——Q—
' '
] t ! ,
l o'? lu+ agf e o' | oo plo-ah
| 2 SR F
|
_____ b= = 1
| ]
A% E Al rod  pedh

F1G. 4. The structure of the matrix T.
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(32) are those having large K-L distances only,
®x’s are all small and, by choosing a suitably large
0, the bound e for ax can be made arbitrarily small;
max of ax < e K 1, (33)
because the K-L distance for the first nonvanishing
element Tx; involved in ax increases when Q in-
creases.
Use of (32) and (33) in successive multiplications by
T of the vector f, leads to the following bounds for
vector T"f:

max of the first Q' elements of T"f,

< EAikfmax + Ak Sk > (34)
max of the other elements of T"f,
< Mok fomax + Anax 1%’ (35)

where ¢ is the maximum of elements fx for
K> Q' and decreases exponentially by increasing
Q' since fx decreases exponentially for increasing K
as described in Sec. III. According to the discussion
in the Appendix, off-diagonal elements of (1 + T)*
are small and the remainder R,f, itself is bounded
similar to (34) and (35). This would justify the
truncation proposed in (19) and, by choosing suffi-
ciently large Q and Q’, errors in the first Q' elements
Jfx become negligibly small without applying the
iteration procedure.

The inequality (34) also shows that the iteration
(expansion) procedure would increase the accuracy
asymptotically—at least up to the second time in
iterations. In practice, continuation of the expansion
procedure would improve the accuracy until the first
Q' elements of vector T™f, begin to increase.

V. SUMMARY OF THE METHOD

The method developed in this paper can be sum-
marized as follows.

(a) The method is formally equivalent to solving the
set of linear equations (4), which defines the inverse
overlap matrix.

(b) The truncation used in reducing the number of
equations to Q corresponds to construction of only
a certain type of diagrams; but, within this limitation,
an infinite number of them are generated and
summed correctly. In this sense, the method covers
Lowdin’s expansion method; but, even for the cases
where Lowdin’s expansion diverges our method gives
the correct results because of the infinite summation.

(c) The error due to the truncation can be made
arbitrarily small as is discussed in Sec. IVB.
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TasLe I. The inverse overlap matrix for the body-centered cubic lattice of hydrogen.
K Ry Sk (S g (S )£*
Q=10 Q=20 g=30 0=50 0 =100 Q=18 0 =3l
0 000 1.000 00 1.6387 48 1.6393 04 1.6393 17 1.6393 18 1.6393 18 1.6392 83 1.6393 14
1 111 0.2890 11 —0.273796 —0.2740 39 —0.274043 —0.274044 —0.274044 —0.274037 —0.274043
2 200 0.2105 28 —0.0669 03 —0.067342 —0.0673 58 —0.067358 —0.067358 —0.067327 —0.0673 59
3 220 0.0716 95 0.0681 38 0.0681 02 0.0681 05 0.0681 05 0.0681 05 0.0681 07 0.0681 05
4 311 0.0361 18 0.0191 16 0.0199 00 0.0199 21 0.0199 22 0.0199 22 0.0198 82 0.0199 22
5 222 0.0291 95 0.0303 56 0.0316 22 0.0316 34 0.0316 37 0.0316 37 0.0316 19 0.0316 38
6 400 0.013225 —0.001801 —0.001662 —0.001596 —0.001596 —0.001596 —0.001603 —0.001595
7 33t 0.0076 73 —0.0118 86 —0.012693 —0.012702 —0.012705 —0.012705 —0.012668 —0.0127 06
8 420 0.0064 49 —0.007206 —0.008048 —0.0081 00 —0.008102 —0.008103 —0.008094 —0.008103
9 422 0.0033 23 —0.002945 —0.002978 —0.002981 —0.002981 —0.0029 12 ~0.0029 83
10 333 0.0020 80 —0.002529 —0.002689 —0.002708 —0.002714 —0.002714 —0.002779 —0.002715
11 511 0.0020 80 0.0002 13 0.0001 56 0.0000 44 0.0000 43 0.0000 43 0.0001 33 0.0000 41
12 440 0.0009 97 0.0034 88 0.0034 82 0.0034 97 0.0034 98 0.0033 87 0.0034 99
13 531 0.0006 56 0.0017 42 0.0018 86 0.0018 91 0.0018 91 0.0018 84 0.0018 94
14 442 0.0005 73 0.0020 45 0.0020 11 0.0020 22 0.0020 23 0.0019 58 0.0020 24
15 600 0.0005 73 0.0002 39 0.0001 86 0.0001 92 0.0001 92 0.0001 06 0.0001 91
16 620 0.0003 37 0.0003 85 0.0003 91 0.0003 92 0.0002 15 0.0003 93
17 533 0.0002 30 0.0001 01 0.0002 58 0.0002 59 0.0002 60 0.0001 36 0.0002 66
18 622 0.0002 03 —0.000078 —0.000076 —0.000076 —0.000157 —0.000074
19 444 0.0001 25 0.0001 64 0.0000 88 0.0001 00 0.0001 00 0.0000 96
20 551 0.0000 88 —-0.001017 ~0.000722 ~0.000788 —0.0007 89 —0.0007 87
21 771 0.0000 88 ~—0.000079 —0.,000093 —0.000094 —0.0000 90
22 640 0.0000 78 —0.0006 09 —0.000606 —0.0006 10 —0.0006 16
23 642 0.0000 49 —0.000345 —0.000341 —0.0003 43 —0.0003 50
24 553 0.0000 35 —0.000319 —0.000236 —0.000270 —0.000270 —0.0002 73
25 731 0.0000 35 —0.0001 06 —0.000124 —0.000124 —0.0001 26
26 800 0.0000 21 0.0000 14 0.0000 17 0.0000 02
27 733 0.0000 15 0.0000 48 0.0000 42 0.0000 42 0.0000 44
28 644 0.0000 14 0.0000 03 0.0000 08 0.0000 07 0.0000 00
29 820 0.0000'14 0.0000 07 0.0000 07 0.0000 01
30 660 0.0000 09 0.0002 33 0.0002 34 0.0002 13
31 822 0.0000 09 0.0000 34 0.0000 34 0.0000 31
32 555 0.0000 07 0.0000 60 0.0000 31 0.0000 20 0.0000 21
33 751 0.0000 07 0.0002 02 0.0001 38 0.0001 51
34 662 0.0000 06 0.0001 52 0.0001 52

8 The results obtained by Calais and Appel (see Ref. 5).

(d) For certain cases, there is an expansion method
which leads to an exact solution as is described in
Sec. IVA. :

Finally, we note that the present method is a special
version of the cluster expansion method in the Heitler-
London approach,® and is generated from the general
theory when it is applied to the ferromagnetic ground
state. Since in the case of the ferromagnetic ground
state the wavefunction given by (2.1) of I is a single
Slater determinant, the quantity S[k|A] defined by
(2.18) together with (2.12) of I'? becomes equal to
|S[k|k]l, and F[k|k] introduced by (3.1) of I is the

12 Equation (2.18) of I should read

Sty -+ k| By - - ] = [Tl - - Kenh]
X Plhyhy) - - - holh)) dr.

same as F[k|h]. In fact, Eqs. (11) and (12) for F[h|h]
and F[k|h] are equivalent to (2.11) and (2.12) of II,
showing that the inverse overlap matrix S~ is given
by the F[k|h] of the general theory applied to the
ferromagnetic ground state.

VI. APPLICATION TO THE HYDROGEN
LATTICE

The present method was applied to the hydrogen
lattice and the programming was carried out on the
CDC 3600 for simple, body-centered and face-
centered cubic lattices with overlap integrals between
1s orbitals given by

Sgk=(01+Rg+ IR%)e Ex, (36)
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The inverse (S—1)x is obtained from (11) and (14) and
written as

(5™ = FIbi) = (1= S neSefic)  G7)
and

(5Mk = FIk | Blgon—s
- —fK(l -3 nK'stfK,)*, (38)

where ny is the number of Kth neighbors.

The results for a body-centered cubic lattice are
summarized in Table I, where the lattice constant
(= R,) is assumed to be 3.8336a.u. in order to
compare them with those of Calais and Appel. The
second column of Table I shows the components of
the vector Ry arranged in the order of increasing
distances, the third column the corresponding overlap
integrals. The next five columns give the values of the
inverse (S~1)x calculated for various values of Q; the
O being the dimension of the linear equations (19).
Those numbers are compared with the results obtained
by Calais and Appel quoted in the last two columns of
Table I, where Q indicates that the calculation includes
all contributions up to the Qth overlap integral. This
is not the case in our method as is clear from the
description in Sec. IV.

In order to save space, we list in this table the values
of (S)g only up to K = 34 and omit others; the
elements omitted are all smaller than 10~¢ and
insignificant. Higher-order terms are automatically
generated by the machine and included in the calcu-
lation, but not necessarily in the order of increasing
distances. This is why, for example, the term (S-1),, is
included while (S—1), is missing when Q = 10.

From Table 1, it is evident that, in this example, both
methods have virtually attained convergence at
Q =~ 30. We have added two more terms, K = 30 and
34, to our third case where Q = 30 and this practically
eliminates the small difference which existed between
the cases Q@ = 30 and Q = 100.

In conclusion, we have shown that the simple
method of calculating the inverse overlap matrix,
given by (4), is based on sound mathematics and is not
just an arbitrary approximation. From the practical
point of view, the method converges reasonably
quickly.
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APPENDIX. CALCULATION OF R.f, FOR
}'max > 1

In this appendix we show that the remainder &, f,
is bounded similar to (34) and (35). For this purpose,
we prove the following theorems.

Theorem 1: The length L of vector Tf is bounded as

L < AnaxLy, (Al)

where Amax is the maximum of eigenvalues of the
Hermitian matrix T and L, is the length of vector f.

As T can be brought into a diagonal form A by a
similarity transformation such that A = UTUY, the
length L of Tf is calculated as

L = (TD'(1f) = (¢ 'uHuTtuHwutu'yun

= (UOAAUN = ZI(UDL 12 (A2)

Since the length L, of f is invariant under a unitary
transformation and equal to Y. |(Uf)g|?, the
inequality (A1) follows from (A2).

Let M; and M, be Hermitian matrices and denote
by ¥; max and v, ., the maxima of eigenvalues of M,
and M,, respectively. Then we obtain

Theorem 2: If v, .¥s max < 1, the matrix
(1 + M;M,)™*
can be expanded in powers of M;M,.
Repeated use of Theorem 1 yields the following
bound for the length L™ of vector (M;M,)"f;
L < (44 max Vs man)™" Lo (A3)

which leads to vanishingly small L™ for n — . By
expanding (1 + M;M,)™! in powers of M;M; and by
using (A3) in each term in the expansion series, we
find the inequality

L < (1 =% max?s max) Lo

showing the convergence of the expansion.

(Ad)

Theorem 3: (the theorem of Levy-Hadamard!®)
The maximum »p,, of eigenvalues of a Hermitian

‘matrix M is bounded as

VYmax S max sz |MKL|‘ (AS)
L

Let us introduce a Hermitian matrix T’ defined by
T =1+ A)#A,(1 + AL (A6)

Since T’ is found to have a structure similar to T
shown in Fig. 4, 1 + T’ can be divided further into

13 See, for instance, E. Bodewig, Matrix Calculus (North-Holland
Publishing Company, Amsterdam, 1959), p. 67.
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two parts X and Y as follows.!

1'@” 0@ —Q)
X= [ :l, (A7)

0('0'.0') 1(—0’)+T(—-Q’)

0(01) T(QIJ_QI)
Y=
T(—Q’.Q’)

0(—0’)
The original matrix (1 + T)! is then written in terms
of the Hermitian matrices X and Y as

A+ T =1+ A) +T)A + Ak, (A9)
where
A+T)'=X+YV1=(>1+ XY) X1

It is easily shown that elements of T’ are bounded as
(32) and (33) and hence

max sz IYKL| S € << 1,
L

(A8)

(A10)

(Al1)

while matrix X is nearly equal to T'. By Theorem 3,
therefore, eigenvalues of Hermitian matrices Y and
X-1 are bounded as

max of eigenvalues of Y < e K1, (Al2)
max of eigenvalues of X~ < 1/(1 — |A,,l), (AI3)

where Ap;y is the minimum of eigenvalues of T".

14 By T@: Q7 we denote the Q' X (N — Q') submatrix of T
consisting of the first Q' rows and the last N — Q’ columns; and,
by T(—¢), the (N — @) X (N — Q') submatrix consisting of the
last N — Q' rows and N — Q’ columns.
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According to Theorem 2, the matrix (1 + X-Y)™!
can be expanded in powers of XY, if
/(1 — |Amul) < 1. (Al4)
As long as the basic functions are linearly independent,
eigenvalues 1 + A of overlap matrix 1 + A are always
positive and hence 1 — |Ay,| > 6 > 0, where 6 is
a given number for a given overlap matrix. Since e
can be made arbitrarily small by choosing a large
Q, the inequality (Al4) should be always satis-
fied, justifying the expansion of (1 + X*Y)™L If
€/(1 — |Amial) €1, the order of magnitude of
(1 + X7Y)! can be estimated by 1 — X~'Y and
hence
A+Tyt~(1-Xw)X1? (Al5)
because (1 + A,)! has a finite number of small
off-diagonal elements and nearly equal to a unit
matrix. Use of (A12) ~ (A15) as well as (34) and (35)
in 1 + T)7'T", leads to

max of the first Q' elements of R,f,

A El{ﬁax

g Sfmax g e+ ——THEE Q) (A6
0= ™ T A ™ 419

This proves that the remainder R,.f, is bounded
similar to (34) and (35).



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 8, NUMBER 5§

Simple Force Multipoles in the Theory of Deformable Surfaces

M. M. BALABAN
University of California, Berkeley, California

A. E. GREEN
University of Newcastle upon Tyne, England

P. M. NAGHDI
University of California, Berkeley, California

(Received 4 August 1966)

This paper is concerned with a nonlinear theory of simple force multipoles for a deformable surface,
embedded in a Euclidean 3-space; the surface is not necessarily elastic. The theory is developed with
the use of basic thermodynamical principles, together with invariance conditions under superposed
rigid body motions. For simplicity, the basic kinematical ingredients are restricted to be the (ordinary)
monopolar velocity of the surface and suitable first- and second-order gradients of the velocity. The
theory of an elastic surface and other special cases of the general theory which bear on the foundations
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of the classical theory of shells are also discussed.

1. INTRODUCTION

HIS paper is concerned with a nonlinear theory of

simple force multipoles for a deformable surface,
embedded in a Euclidean 3-space, and may be
regarded as a counterpart of a general theory of
simple force and stress multipoles for three-dimen-
sional bodies given recently by Green and Rivlin.!
References to related and other special developments
in the theory of simple force multipoles and theories
of elasticity with couple-stress may be found in the
paper by Green and Rivlin!* and in the monograph
by Truesdell and Toupin.? The kinematic variables
(in the rate of energy equation) in the work of Green
and Rivlin! are the (classical) monopolar velocity and
the gradients of velocity, up to order n, in a rectangular
Cartesian coordinate system. Here, however, we limit
ourselves to a theory of deformable surfaces in which
the basic kinematic ingredients are the velocity of the
surface, together with suitable first- and second-order
gradients of the velocity. The further inclusion of
higher-order velocity gradients is possible and may
be carried out in the same manner, although at the
expense of additional complications.

We find it particularly convenient in this paper to
employ an invariant vector notation in the develop-
ment of the basic theory; the notation used is essen-
tially similar to that in Green and Zerna® or Naghdi.*

1 A. E. Green and R. S. Rivlin, Arch. Ratl. Mech. Anal, 16, 325
(1964).

2 C. Truesdell and R. A. Toupin, in Encyclopedia of Physics,
S. Fliigge, Ed. (Springer-Verlag, Berlin, 1960), Vol. ITI/1, p. 226.

3 A. E. Green and W. Zerna, Theoretical Elasticity (Clarendon
Press, Oxford, England, 1954).

4 P. M. Naghdi, in Progress in Solid Mechanics, I. N. Sneddon
and R. Hill, Eds. (North-Holland Publishing Company, Amsterdam,
1963), Vol. 4, p. 1.

While each symbol is defined when first introduced,
a few helpful remarks about the notation are made
at the end of Sec. 2, where we have collected some
basic formulas concerning the geometry of a surface
embedded in a Euclidean 3-space.

In Sec. 3, we consider the kinematics of a surface
corresponding to the velocity of the surface (a three-
dimensional vector field), and suitable first- and
second-order gradients (with respect to surface
coordinates) of velocity which are invariant under
coordinate transformations of the surface. Related
and associated kinematical results when motions of
the surface differ from those of a given motion only by
superposed rigid body motions are discussed in Sec. 4.
The measures of deformation for the surface emerging
from these kinematical considerations are equivalent
to the first and the second fundamental forms of the
surface (in both deformed and undeformed configura-
tions), as well as their gradients, all of which are
surface tensors.

Next, using a principle of balance of energy and a
Clausius-Duhem inequality, valid for a surface embed-
ded in a Euclidean 3-space, together with invariance
conditions under superposed rigid body motion, we
develop in Sec. 5 a theory of simple force multipoles
for deformable surfaces. As already noted, the basic
kinematic variables of this theory are the velocity and
its first- and second-order gradients and, consistent
with these kinematical ingredients, only monopolar,
dipolar, and tripolar contact and body forces are
admitted. The derivation in Sec. 5, carried out in a
neat vectorial form, conceals the relative complexity
of the results and hence alternative forms of the basic
equations of the theory, in terms of tensor components,
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are collected in Sec. 6. The theory of Sec. 5 or 6 is exact
and entirely consistent with the basic dynamical and
thermodynamical principles of continuum mechanics.
Moreover, it is valid for nonisothermal deformations
and is not necessarily limited to elastic surfaces.

The remainder of the paper deals with special cases
of the theory. Nonlinear constitutive relations in
terms of the Helmholtz free energy for an elastic
surface are derived in Sec. 7 and special cases,
including a determinate theory of an elastic surface
with simple force dipoles, are discussed in Sec. 8.

Our present study is a contribution to the theory of
deformable surfaces by a direct approach, in contrast
to that which may begin with the three-dimensional
equations. For other developments in the theory of
deformable surfaces by a direct approach, we mention
a linear isothermal theory for an elastic surface by
Serbin,® an isothermal nonlinear theory of elastic
surfaces by Cohen and DeSilva,® and a general theory
of a Cosserat surface by Green, Naghdi, and Wain-
wright.” The latter contains other references, where
the works of E. and F. Cosserat® and Ericksen and
Truesdell® are particularly cited.

While we do not consider here the linearized version
of the theory of Secs. 6 and 7, this may be carried out
in a manner similar to that in the paper by Green,
Naghdi, and Wainwright.” There has always existed
an interest in constructing theories of elastic plates
and shells from the three-dimensional equations of
linear elasticity by admitting higher moments of
stress (see, e.g., the papers by Tiffen and Lowe!®11)
and, in this connection, the theory of Secs. 6 and 7
is rather illuminating. Moreover, the pature of the
determinate tripolar and dipolar theories discussed in
Sec. 8 sheds further light on the foundations of the
classical theory of elastic shells.

2. PRELIMINARIES. GEOMETRY OF A
SURFACE IN A EUCLIDEAN SPACE

Let z,, (i=1,2, 3), refer to a fixed right-handed
rectangular Cartesian coordinate system in a Euclidean

5 H. J. Serbin, J. Math. Phys. 4, 838 (1963).

$ H. Cohen and C. N. DeSilva, J. Math. Phys. 7, 246 (1966).
Although Cohen and DeSilva begin by including a director in
their work, they soon abandon this. In the context of the present
paper, the work of Cohen and DeSilva may be compared to a
special case of our theory in Sec. 8, called the restricted theory of
simple force dipoles. However, even in this case, there are some
differences between their equations and those of our restricted
dipolar theory.

7 A. E. Green, P. M. Naghdi, and W. L. Wainwright, Arch. Ratl.
Mech. Anal. 20, 287 (1965).

8 E. and F. Cosserat, Théorie des Corps Déformables (Hermann
et Cie, Paris, 1909).

?® J. L. Ericksen and C. Truesdell, Arch. Ratl. Mech. Anal. 1, 295
(1958).

10 R, Tiffen and P. G. Lowe, Proc. London Math. Soc. (3) 13,
653 (1963).

11 R, Tiffen and P. G. Lowe, J. London Math. Soc. 40, 72 (1965).
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3-space, and let x* denote an arbitrary (real) curvi-
linear coordinate system defined by the transformation
relations

z; = z(x!, x2, x®). 2.1)
We assume (2.1) to be nonsingular, so that a unique
inverse

xt= xi(zl » 225 23) (2'2)
exists at each point of space with a neighborhood
R, where

det [0z;/0x7] # 0. 2.3)

Denoting by p(x’) the position vector of a generic
point of the Euclidean space, then the metric tensor
of the coordinate system x* is given by

85 = P,i* P,; = (02,/0x*)(0z,/0x%), (2.9
where z; are the Cartesian components of p and a
comma stands for partial differentiation. From (2.4)
follows
2

%z " o, (2.5)

92,0z | _ | 0z
ox* 9x’ ox*
in view of (2.3). The conjugate tensor g%/, namely the
inverse of (2.4) which exists on account of (2.5),
together with g,; satisfy

g%k = gug” = 9, (2.6)
where d¢ is the Kronecker symbol. We also define the
contravariant and covariant ¢ systems by

g = det [g,] =

ik . gt ik —
€ —g%e’, eia‘k—'géeﬁk’

2.7)

where ¢ and e,; are the standard permutation
symbols in 3-space.

Consider now a surface s embedded in a Euclidean
3-space and let the position vector of a point on this
surface be denoted by r(x%, x2) with {x!, x?} being
simply parameters, as yet unrelated to the curvilinear
coordinates x* utilized between (2.1) to (2.7). Let a,
be the base vectors along the x* curves on s and let
a,p denote the first fundamental form of the surface.
Then

8, =T,, Q= 2,2, (2.8)

where in (2.8) a comma denotes partial differentiation
with respect to x* and «, # = 1, 2 only. The reciprocal
of (2.8); and (2.8),, denoted by a* and a** and defined
for all points of s for which

a = det (a,,) #0, 2.9)
together with a, and a,;, satisfy
af __ a, B = 5%
a¥ =a*.a", a%*.a 0 » (2.10)

where 8% is the Kronecker symbol in 2-space.
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We introduce the second fundamental form of the
surface through

(2.11)

where a3 is the unit normal to any point of s and
satisfies the relations

buﬂ = &g * a,'ﬁ = 4ag * aﬁ,, = bﬂu’

ag-a3=1, a;-a,=0, az-a,,=0. (2.12)

We recall, from differential geometry, the formulas

8,5 = bypas,
a5 = —bjpa,, (2.13)
baﬁlv = bulﬂ’
and also note, for future reference, the result
Typy — Tapws = Rlosy i (2.14)

where in (2.13) and (2.14) a single stroke designates
covariant differentiation with respect to a5 T, is any
surface tensor, and R{L,y is the Riemann—Christoffel
surface tensor given by

= —Rly
= b,,bj — b,pb?. (2.15)
Consider again the surface s and assume the
existence of a neighborhood R(s) in which points in
space lie along one and only one normal to s. Let
x3, a parameter measured (to the scale of z;) along the
positive direction of the uniquely defined normal from
s, denote the distance to any point in R(s). It then
follows that any point in R can be located by means of
the relation

p(x?, x2, x3) = r(x1, x2) + x%ay(x', x2). (2.16)

Ri.

«apy

If we now identify the parameters x!, x2, and x® with
the curvilinear coordinates x*, then x* = {x*, x*} may
be regarded as a system of convected normal coordi-
nates and (2.16) represents the transformation rela-
tions between these normal coordinates and z,, the
Cartesian components of p.

The existence of a neighborhood R(s) in which
every point is uniquely located by -(2.16) may be
verified in the manner discussed by Naghdi.* Indeed,
if R, and R, are the principal radii of curvature of the
surface, in view of (2.9), we need only choose

R(s) = {(x*, x°):[x*| < min (|Ry), [Re)} (2:17)

to ensure that.(2.3) is always satisfied. With this
choice of R(s), (2.16) is nonsingular and hence the
various formulas given earlier in this section remain
valid.
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We also note here that on the surface x3 = 0, we
have

€3=0, gu=1,
gas = 0’ g33 — 1,
g = a.

8up = Qg >

g = o, (2.18)

A few remarks concerning the notation and
convention used may be helpful at this stage. Through-
out the paper Latin indices (subscripts or superscripts)
have the range 1, 2, 3, Greek indices have the range
1, 2, and the usual summation convention is employed.
We use a single stroke ( | ) for covariant differentiation
with respect to the first fundamental form of the
surface, a semicolon (;) for components of the
covariant derivative of a vector function as in Eq.
(3.6), a comma for partial differentiation with respect
to surface coordinates x*, and a superposed dot for
material derivative, i.e., differentiation with respect
to time, holding x* fixed. The lowering and raising of
superscripts and subscripts of space tensors defined
on x%® =0 (e.g., the components v; of the velocity
vector in Sec. 3) is accomplished by using the metric
tensor g,; and its conjugate defined in (2.18).

3. KINEMATICS OF A DEFORMABLE SURFACE

Let the motion of a surface s, embedded in a
Euclidean 3-space, be referred to a fixed right-handed
system of rectangular Cartesian axes. The position
vector of a typical particle of s at time ¢ may be
designated by r, where

r =r(x%, x% 1), @G3B.1)
and x* together with x® represent a system of con-
vected normal coordinates introduced in Sec. 2. Also,
we impose the restriction

det [9r/ox*] > 0 (3.2)

for physically admissible motions.

The first and the second fundamental forms of the
surface, as well as various formulas of Sec. 2 involving
r, a3 and their derivatives, are still valid except that
now these functions depend also on ¢t. We designate
the initial value of r at time ¢z = O by R and refer to
the initial (undeformed) surface by 8§ and denote its
first and second fundamental forms by 4,, and B,,,
respectively.

Let v, a three-dimensional vector field, denote the
velocity of 5 at time 7. Then, when referred to the base
vectors a, = {a,, a,} of s, v may be written as

v = v'a, = v'a, + v, = va’. 3.3)
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Since the coordinate curves on s are convected, we
havei?

»

‘éa =V =V,

= (Umu - bpavs)aﬁ + (vg, + bﬁ”ﬁ)“s 3.4
and then, by (2.12), we can show that
éa == —(Ua'a "+" bgvﬂ)aa, (3-5)

where a superposed dot denotes the material derivative
with respect to ¢, holding x* fixed. We also introduce
here the notation v, by writing the right-hand side
of (3.4), as v, ,a* so that

(3.6)

vla =V = vi:uai

and
Vga = Vjp * 8 = (Um — by;09), (3.7
Ugg = V) * 83 = (vs,« + b:vi.)'

We now record without proofs certain kinematical
results established previously.” Thus

é« = (ﬂm + Wka)ak’
a* = g™y, — M)A’
a, = 2% = gt

3.8)

where
2as = 25, = (Uy)p + Vpja — 2b4apVs)
= (vaz;ﬁ + Uﬂ;u)’ (39)
Haa = Yoz = 03 ¥las = 0:
and
2y, = —2yp, = (an - Um)
= (va'ﬂ - vﬁ‘a)s
’ y 3.10
Pz = —Ygu = _(Ua,u + bgvﬂ) ( )
Psa = 0.

In view of (3.9) and (3.10), the components of the
velocity gradient v|, given by (3.7) may now be put in
the form

Dl;a = n/’la + w&a3 va;a = %a- (3‘11)
For future convenience, we define here the kinematic
measures

€p = %(aaﬁ - AaB)S Kap = _(ba,ﬂ - Baﬁ)s (3'12)

introduce the notation3

N = nkaak = %(v(a «a, + Vi a)al (3'13)
and note that
bop = Tap = Hg: (3.14)
Kdﬂ' _ af *

13 See, for example, Ref. 3.
. 1;1;? %s defined by (3.13) is negative of the corresponding quantity
in Ref. 7.
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Also, the rate of change of the determinant of a,, is
given by

d = det (a,p)
= (al] aa&v){det (aazﬁ)]d},v

= aa*d,, = 2an}.

(3.15)

It is clear from (3.9) to (3.12) that e,;, K,5, 74, a8
well as y,; (a subtensor of y,,), are surface tensors,
whereas y,; is a space tensor. The tensors 7,; and
¥, may be referred to as the surface rate of deforma-
tion and the surface spin, respectively.

We consider now the higher-order velocity gradients.
The second-order velocity gradient v;,,, by (3.4), and
(2.13),, may be expressed as

Vigg = (81 = (byp8s) + Piﬂaz

= baﬂas - bap”s;za;' + P:ﬁaz ’ (3.16)
where I'Z, is the surface Christoffel symbol given by
T =a%-a,,. G171

It is clear that v, is symmetric in the indices («, §) so
that vj,3 = V.4, Where the notation T\, stands for

Tupy = Ty + Tl (3.18)

The third-order velocity gradient v, is symmetric
only in (%, 8). In fact, by a formula of the form (2.14),

Viapy = Vieyg = R.);gy"u, 3.19)
and with the help of (3.19) and (2.15),, we have
Yizpy = Vitapy) + %[ba:ybé + bpyb: - wab;‘]ﬁ;, (3.20)

where V)4, is completely symmetric in («, 8, ).

We can easily obtain various expressions for the
components of v, and v, namely, v,.,5, Vg4
and v,.,4,, Us.g, Similar to those in (3.7), but we do
not record these here.

4. SUPERPOSED RIGID BODY MOTIONS

We consider a second motion of s which differs
from the previous motion (3.1) only by a superposed
rigid body motion when the surface has the same
orientation as in the first motion. Let the velocity
vector at time ¢, corresponding to the second motion,
be denoted by v*. Then

v =v+ v+ w x (T —r1)]

=v+b+wxr], 4.1

where the quantity in the bracket represents an
arbitrary velocity due to rigid motion, and b=
Yo — 0 X Ty, Vo and w are vector functions of time
only. '
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From (4.1), we have
v]'; = v:'; =Vv,+ wxa,. 4.2)
Also, with the help of (2.13), we obtain from (4.2)
4.3)

*
Viagy = Viapy — Dapbyed X @, + b0 X a3, (4.4)

* .
vlaﬁ = V,aﬂ + b,ﬂw X as,

We now define the kinematical quantities

Neg = Npy = Vjug + Dap(¥)2+ aga’

= V|5 + baﬂus;).al’ 4.5)

naﬁv = n(aﬁy)
= Vigpy + bughVio + bag)y(V)2 - 2%, (4.6)

and note that (4.6) is completely symmetric in the
indices («, 8, ) in view of (3.20). Using (4.2)~(4.6)
and (3.13), and noting the identity

[(w x a) -a;]a* = —[(w x a5) - a;]a* = —w x a,,
%))
it can be easily verified that

7]: = Ny n:ﬂ = Nag» n:ﬂy = Tagy - (4'8)

Hence the kinematic variables ¥, 1,5, 0,4, are in-
variant under superposed rigid body motions when
the surface has the same orientation as in the first
motion,

From (4.5) and (3.16), we have

Nag = Nap) = Viap + baﬂ(vll * as)al

= baﬂa3 + P:ﬂal = ni(aﬂ)ai 4.9)

and
Naap) = a).yr':ﬁ, ﬂs(ap) = baﬁ' (4'10)

Recalling that

buﬁlr = baﬁ,v - Fzrbaﬁ_ - ;ybaa’ (4-11)

then

(baﬂly) = (baﬁ)]y - bdﬂaalnl(ay) - baaadlnl(yﬂ)

= Nataply — Dilatan — batlacp » (4.12)

(bagiys) = Nsiaprlys — b;iﬂl(ay”& - bﬁ"h(yﬂ)]a
— [ maeer + basnagn)
+ Bhiataan + baptaga) + a*bugatonl

“4.13)
Now, differentiate (4.9) to obtain

Viagy + Dugy(¥)a aga’ + baﬂ[(vllx - ag)a*
~ AbS(v; - a)a* + bi(v; - agag)
= (baﬂ)lyaﬂ — bgbla, + (P:B)Ira}. + f:ﬁblyaS'
4.14)
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From (4.14), fogether with (4.5), (4.6), and (4.12),
we deduce

Neapy + bap['lw) . as]a;'
— bog[bi(v)1 - 2,)a" + bi(v);, - a,)a’]
= (bp))yas — bybsa, + (I 2+ ['sb1,8
(4.15)
and

Napy = Nitapn®

nl(aﬂy) = 77).(1B)|y - [b}.yna(aﬂ) +‘baﬁ’78(1.1)] + 2b¢ﬂb;"7¢}.’
(4.16)

Natapy) = Bappy) + DpMaieny + Oacapy + D¥Matapy »
where we have also used

F:ﬂ = alvnv(aﬂ)’ (417)
which follows from (4.10), .

We close this section by calculating suitable
expressions for the material derivative of gradients
(with respect to a,z) of A,; which will be needed
subsequently. Recalling that

Anply = Augy — TayAsg — T5dn, (418)
with the help of (4.17) and the fact that 4, =0,
we obtain

(Aaﬁly) = _alv[Alﬁnv(ay) + Ahﬂv(lh)]‘ (419)

In a similar manner, from (4,4,;), we deduce the
result

(Azgy0) = —a*"[Aignvianis + Asllvismal
— a*{[A1pMvap + Aipilivian]
+ [Asastivien + Asaivion) + Aapiifivin }-
(4.20)

5. A THEORY OF A DEFORMABLE SURFACE

Let o, the area of s at time ¢, be bounded by a
closed curve c and let v be the outward unit normal to
¢ lying in the surface. If m is a three-dimensional
vector field defined on s and if, for all arbitrary
velocity fields v, the scalar n - v is a rate of work per
unit length of ¢, then n is called a contact force per
unit length. If n* are contravariant vectors (under
transformation of surface coordinates x%) and if,
for all arbitrary velocity gradients v,, the scalar
n*-v, is a rate of work per unit length of ¢, then
n* will be called a simple dipolar contact force per unit
length. Similarly, if n* are contravariant tensors
(under transformation of surface coordinates x*) and
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if, for all arbitrary second-order velocity gradients
Vi.5, the scalar n* . v, is a rate of work per unit
length of ¢, then n*# will be called a simple tripolar
contact force per unit length.

Similar definitions can be provided for the three-
dimensional assigned force f per unit mass of s and
the simple dipolar force £* and simple tripolar force f*#,
each per unit mass, through their (scalar) rate of work
per unit area of s. The above definitions can be easily
generalized for simple multipolar contact forces per
unit length (nr"'*m, m=1,2,---n) and simple
multipolar forces per unit mass of s(fa'" *=),

We assume that the forces f, f*, and f*4, per unit
mass, act throughout o (an arbitrary area of s at time
t) and that the contact forces n, n%, n*#, all per unit
length, act across c¢ (a boundary curve of o). In
addition, we assume the existence of an internal
energy function U per unit mass, an entropy function
S per unit mass, a heat supply function r per unit
mass and per unit time, a local temperature T (> 0),
and a heat flux # per unit length of ¢. The equation
for balance of energy and the Clausius-Duhem
inequality may then be written as

D

- U 4+ Kldo

DtJ;P[ + 30 + K]
=fp[r+f-v+f“-v|,+f"‘ﬁ-v|al,]da

+f[n V40t eV, + 0% y,lde -—Jh de (5.1)

and
D { r h
—_ S do — —d(r+f—dc>0, 5.2
Dt ap J;P T ¢ T - -
where p is the mass density, v is the magnitude of
v, D/Dt denotes the material derivative, K in (5.1),
representing the contributions to the kinetic energy
due to velocity gradients, is taken in the form
K = %[y“”vla . V“; + ylﬁ}'t’vlaﬁ . vly,,]. (5.3)
with y*# and y*#7? assumed to be functions of the sur-
face coordinates x* only, so that y*# = 0 and y** = Q.
Without loss of generality the coefficients y*#, y*»®
have obvious symmetry properties. Product terms in
¥, ¥, V|, could be included but we restrict attention
to (5.3).
Recalling that the rate of change of an element of
surface area do is given by

d-—(')' = }aYdado, do = atdx!dx?, (5.4)
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then after carrying out the indicated differentiation,
(5.1) becomes

fp(U + v:.v)de +J[U + 30? + Kla~}(pat) do

—fpf-vda—fn-vdn

=f p[r + f“ . vla + Iaﬂ . Vlaﬂ] do

+f[n°‘ Vi, + 0% v 5 — hlde, (5.5)

where a superposed dot stands for material derivative
and where we have put

fr— g2 — yaﬂ@, fob — b yaﬂvé(v?;). (5.6)

Since v,,; is symmetric, it is clear from (5.5) that the
tensor n* in n* . v, may be taken to be symmetric
in («, B) without loss in generality. A similar remark is
applicable to f** in (5.5).

We now assume that p, U, A, r, n, 0%, n*, (f — V),
fe, {+#, are unaltered by arbitrary superposed uniform
rigid body translational velocities and proceed to
consider the invariance of (5.5) under such motions.
Thus, in view of (4.1), if we replace v by (v + b) in
(5.5), then after subtraction follows the equation

b- { f (v — f) + va ¥(pat)] do — f n dc}

+3b- b){ f a—*—’% (pab) do} =0, (5.7)
which must hold for all arbitrary constant vectors b.
By replacing b by fb, 8 being a scalar, it then follows
from (5.7) that

La“i —ll)lt (pa’}) do =0, (5.8)

L[P(V —f)+vat -ll)lt (Pa’}):] do —fcn dc = 0. (5.9)

Since (5.8) holds for all arbitrary areas o, it follows
that

a*(D|Dt)(pat) = 0, (5.10)
or alternatively we have
. 1 d N A
P+§P;=P+P"h=0, (5-11)

where (3.15) has been used. In view of (5.10), (5.9)
reduces to

J;[p("’ — D)l do —Ln de =0, (5.12)
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and the energy equation (5.5) assumes the simpler
form

fp[U— r+ @ =0y =Ty, =1y ,ldo

=f[n v+ n*ev, + n* . Vip — hldc, (5.13)
¢

where I2 and 1% given by (5.6) represent the difference
between the assigned forces per unit mass and the
inertia terms due to higher-order velocity gradients.
The simple contact forces m, n%, n*#, when referred
to the base vectors a,, can be expressed as
n= niai = Rlal + nsa:;,
n* = n"a; = n*a, + n¥a,, (5.14)
n? = n'*fa, = n*fa, 4+ n*¥a,.
Similarly, the simple force multiples f, %, %, as well
as f«, f*# may be written in the forms

f=fla, f*=f"a, f§*=fify,

faz — fz‘aras" i‘a{l — f"z‘aﬁai.
Over a curve with unit normal v = »,a®, the (physical)
contact force vector is m. If m'* are the (physical)

force vectors over each coordinate line, then applica-
tion of (5.12) to a curvilinear triangle yields

n =3 @)t = N, N*=n%a)t (5.16)

(5.15)

Hence, N¢ transforms as a contravariant surface
vector and we can write

N* = Niaa, = Nlaa;' + Nsaa:;
and by (5.14);

(5.17)

n'= N%,, (5.18)
where N* and N3* are surface tensors under trans-
formation of surface coordinates.

Substituting (5.16) into (5.12), then under the usual
smoothness assumptions and making use of Stokes’
theorem, we transform the line integral into a surface
integral and deduce

L[p(v" — 1) — N, do =0,

which holds. for arbitrary o. Hence, we have the
equations of motion

(5.19)

Ni; + pf = pt. (5.20)
Before further considerations of the energy equation

(5.13), we return to the entropy production inequality
(5.2) and with the help of (5.10) deduce the inequality

r h
J;p[s- T] do +£?dc2 0. (521
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If h* is the value of the flux of heat across the x*
curves, then applying (5.21) to an arbitrary curvilinear
triangle on s, bounded by coordinate curves through
the point x* and by ¢ with unit normal »,, we obtain

h>vgh gf = k@) (5:22)
which holds for all »,. Now, let 4~ be the flux of heat
across ¢ corresponding to —v,, then by (5.22),

h 2 - aqaa (523)

since ¢* is the same for a given thermodynamic process.
Combining the inequalities (5.22); and (5.23), we get

—h <Lvq*<h (5.24)

But, # = —A~ since the heat flux must be continuous
across all curves on s. Hence, we must have!4

h=v,4q"% (5.25)

Denoting by n'"*, n'™*# the (physical) simple force
maultipoles over the x" curves, then application of the
energy equation (5.13) to a curvilinear triangle on
s, in view of (5.20) and (5.25), results in

v, + 8% v, =0, (5.26)
where we have set
i =n"— N%,, Ne=w™@m (5.27)

i = 0% — N™y,, N™ =" (gmi. (5.8

Introducing the notations

G* = N+ NI + o,
G¥ = N + Ni## + pf*, (529
G = Nﬁﬁ?’

then substituting (5.26) into (5.13), transforming the
line integrals into surface integrals and after re-
arranging the results and using (5.20), we obtain

pr—di— pU + G* v,
+ G vy + G o vy, = 0. (5.30)

Next, we consider motions which differ from the
given motion by a superposed uniform rigid body
angular velocity, the surface s occupying the same
position at time . We assume that p, U, r, ¢*, 0%, i*,
G*, G**, G*#?, are all unaltered when the surface s is
subjected to a superposed uniform rigid body angular
velocity. Thus, using the results (4.2) to (4.6) and
(3.13), we deduce from (5.26) and (5.30) the equations?®

(5.31)

14 The result (5.25) deduced from (5.22) can also be shown in the
case of a recent paper by Green, Naghdi, and Wainwright” which
deals with a general theory of a Cosserat surface.

15 1t can be shown that the components of Nu, Nug, Negy With
respect to al are unaltered under all superposed rigid body motions.

n° x a, + b x a, =0,
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and

(G* — byyb}G™) x a,
+ (bsG™ + by ,G") x 2, =0, (5.32)
together with

BN, + 5% Ny =0 (5.33)

and
pr — df, — pU + G*+ 7,
+ Gﬁﬂ . "]a,e + GW«S . nuﬂy — 0, (5.34)

We note here that since n*# = n® and since N/
(being the values of n“? over the coordinate curves
x") is symmetric in (e, §), then n*# given by (5.28) is
symmetric in («, §). Also, by (5.29), we have

Golevl = 3G — G} = 0. (5.35)

We complete our general theory by returning to the
entropy production inequality (5.21). With the help of
(5.25) and under suitable smoothness assumptions,
after transforming the line integral into a surface
integral, we deduce from (5.21) the (local) inequality

pTS — pr + gl — ¢(ToJT) 2 0. (5.36)
The basic field equations of the theory then consist
of': the (local) equation (5.11) for conservation of mass,
the equations of motion (5.20), the energy equation
(5.34), as well as the remaining basic equations and
symmetry conditions (5.33), (5.31), (5.32), together
with the inequality (5.36). Inspection of (5.33) and
(5.34) suggests that for a complete theory constitutive
equations must be found for ¢, U, 8%, n*#, G*, G*, and
G*#7 and these can be reduced to a canonical form
with the use of invariance conditions for each equation
which keeps the left-hand sides of (5.33) and (5.34)
unaltered by all superposed rigid body motions. If
we assume that 0%, n*# are (invariant) vector functions
under transformation of surface coordinates, it then
follows from (5.27), (5.28) and (5.29) that N, N,
G, G*, etc., transform as contravariant tensors under
transformation of surface coordinates. Moreover, if
we set

G™ = G"*a, = G'™a, 4+ G™a,,  (5.37)

G™ = G'by, = G*Py, 4 Gy,
then GAr=, G382, GMe8, G318 are surface tensors.

(5.38)

6. ALTERNATIVE FORMS OF THE
BASIC FIELD EQUATIONS
Although the derivation of the basic theory of Sec.
5 in vector form is simple and aftractive, it conceals
the relative complexity of the resulting equations.
For this reason and for future reference, we collect
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here the basic equations of Sec. 5 in terms of tensor
components.

By taking the scalar products of (5.20) with af and
again with a; and using (5.17) and (2.13), we obtain
the equations of motion in the form

Nf# — bIN™ + pf? = pc’,
Nz + bgN* + pf* = pc’,

where ¢! = {cf, 3} are the components of acceleration.
Also, from (5.29), we have the differential equations

G).a — pfla — Nla: + Nfl:a —_ b'ﬂ;NSna’

(6.1)

6.2

6% ~ pf* = N* 1+ N + b, &P

Glaﬁ — p}:f‘(aﬁ)= NA«,B + Nﬁ;}(aﬂ) — b'l;N&p(am’ 63
G&:ﬁ — fs(aﬁ} — N&ﬁ + N‘I’ag(«ﬁ) + b;.,,Nb’(“m, ( . )
Gla(ﬁy)'r- N).g(ﬂy), G&(ﬁy) — Naa(ﬂ‘i)’ (6‘4)

where G2, G'@P) G are defined by (5.37) and
(5.38).

With 7% = n*-af, 7 =n*.a’, the component
form of (5.31) may be written as

€l + Eiakbapﬁ“ﬂ =0, (6-5)
or equivalently

€ A% =0,

7Y — bi*® = 0.

Similarly, from (5.32), we obtain
€alG* + G=#7b, b2] = 0,
Gav — baﬂG“p - bzbwGsv(aB) — baﬁth(aﬂ) =0.
6.7

(6.6)

The component form of (5.33) is given by

ﬁlaﬂ(i.a) + ﬁiaﬁni(«zﬁ) =0 (68)
and the rate of energy equation (5.34) may be ex-
pressed in the form
pr— gj. — (TS + TS~ 4)

+ Gy + G ey + G y0py = 0, (6.9)
with A, defined by
A=U=-TS, (6.10)

being the Helmholtz free energy function per unit

mass.
From (6.6) and (6.7) follow the results

pliel = NiMea,
(1% — bgn*P) = (N** — b N*y,  (6.11)
and G 4 b, bGP = 0,
G¥ — b,yG™ — b2boyG™ P — by, G" =0,
(6.12)
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where ni#l js the usual notation for the antisymmetric
part of n*2. Also, by (5.35), we have

G = 0. (6.13)
Supplementary to the above field equations, we also

have the equation (5.11) for conservation of mass and
the inequality (5.36).

7. AN ELASTIC SURFACE

Guided by the form of the rate of energy equation
(6.9) and other basic field equations in Sec. 6, and
since the constitutive equations for an elastic con-
tinuum are rate independent, the constitutive equations
for an elastic surface may be defined to depend on the
first and second fundamental forms (in both de-
formed and the initial configurations), as well as their
gradients. However, since a,;, = 0 and I'}; is not a
tensor, for the tripolar theory of this paper, we adopt
as the kinematic variables €up5 Kaps Aaps Auplys Aapiys »
bugy,» Byg, the first two of which are given by (3.12).

Thus, we define an elastic surface by the constitutive
assumptions'®

A= AT, ey, Kaps Aﬁﬁi’r’ Aezﬂh’é’ b«ﬂ!v)’ 7D

together with assumptions of similar form for S,
Nin Nina Ninaf the constitutive assumptions

4" = q'(T, T, exp> kaps Aaplys Auppyss> bagyy)s  (7:2)
n* = 1T, ey, Kap> Aaply> Auplyss baglys vy (1.3)

and an assumption similar to (7.3) for n**#), Although
not shown explicitly, the dependence of the above
constitutive functions on the initial values of the first
and the second fundamental forms A4, and B,; are
understood.

Recalling that (6.8) holds for all arbitrary values of
the velocity gradients and since the constitutive
assumptions are independent of the rate of change of
the kinematic variables, it follows from (6.8) that

n'® = Ny, (1.4)

nt‘(mﬁ) - Ni::(aﬂ)yn. (7.5)

Equations (7.4) and (7.5) also show that N and
Nine8) gre surface tensors with respect to the index
7. Moreover, in view of (7.4) and (7.5), Egs. (6.11) are

now identically satisfied.
Combining (6.9) with (5.36), we obtain

Gicﬂ)’?(aﬁ} + Gi(aﬁ}’?i(aﬁ) + Gi{aﬂwnz‘(aﬁy)
— pd = pST =~ g'T, 2 0. (1)

16 The difference (I'}g — sI'%p), where (I'Zg is the Christoffel
symbol of the initial surface, is a tensor and could be used instead
of Agpyy in (7.1). Also, variables of the type Bag(y are not included
since they can be expressed in terms of Bay, A4y, Aay}y and the
covariant derivatives of B3y with respect to the initial surface.
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From (7.1) and using (3.12), (3.14), (4.10), (4.16),
(4.19), and (4.20), the rate of change of the free energy
A may be expressed as'’

04 04 04

o4
A=—=T+— )~ = Maepy * T
aT T ae, ™ oy, ™ T 3

X Msagy — (Binagn + biMage + biaep)]

o4 04
0(Ayg)) O Appye)

X a*{ A5 u0ar5) + (BysMatay + aylisivsr)

= 2byybinien] + Aualvisye) + buaaigsy

+ bpmson — 2bg,binen] + Augiifviye

+ [Aaasfvign + Augiafvian]

+ [Auayivissr + Aappytivian}- 7.7

Substituting (7.7) into (7.6) and taking account of
(7.2) and the constitutive assumption for S, we obtain
an inequality which holds for all arbitrary valués of
Niapy > Nitad) » Nitapy a0 T at time 7. Then, in a manner
similar to that of Coleman and Noll,® we deduce the
constitutive equations

a“[AAa"?v(py) + AiMvan} —

S = —A[3T, (7.8)
0A 04
G = p 22 4 2p(a®®bf + a”PbDb A, — 25— |
aeaﬂ ° o a(AAv{yé)
(7.9)
A
G = —p P) - pa‘"A“bw,
Kog
d4 04 ]
x — pA,b,
[a<AW) 7 B
04 04
x | a + ot ] 7.10
[ a(AwS] yﬂ) a(AwS] yat) ( )
oA A4
G/’t(a{i) — _palvAy [ + ]
"Lo(Ap) A Aayp)
04
_ 3pbl — Pai.v
" 0(begyy)
d0A - 04
el o )
{2 ! a(Ayé{aﬁ) a(ArJ}ﬂa)
04 04
+ A, ( + )
ol a(A[hSh!a) a(AmS]yﬂ)
04 0A
+ 4, ( + )} 7.11
" a(Amaa) a(Azylﬂa) ( )

7 In evaluating 84/ 9e,g, the tensor ez in A is understood to stand
for ¥eqp + €ga). A similar remark holds for 84/9x,p, etc. Also, in
evaluating 04/2(bypyy), bapyy in A is written in a form which is com-
pletely symmetric in (o, 5, yg.

(191; 3B) D. Coleman and W. Noll, Arch. Ratl. Mech. Anal. 13, 167
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04
a(baﬂlv) ’

3(apBy) =p

(7.12)
Gl(aﬁy) — __%Pa).vAw’
0A 0A dA
+ + ]
{ [a(AJa |ﬁ7) a(Aéﬁ | ya) a(Aéy |aﬂ)
04 04 0A
+ [ + + ]} (7.13)
a(AdaI 713) a(Abﬂ ]ay) a(Aav | ﬁa)
as well as
—°T, > 0. (7.14)

Also, with the use of (7.9) to (7.14), the rate of energy
equation (6.9) reduces to

pr — pTS — 4. =0, (7.15)
which may be used to determine the temperature.
The constitutive relations (7.9) to (7.14) are valid
for an elastic surface which is anisotropic in some
preferred state, usually taken to be the initial unde-
formed state. We can now study the effect of material
symmetries in restricting the form of the constitutive
equations along the lines discussed by Green and
Adkins.!® In the special case when the surface is
initially isotropic with a center of symmetry and if we
assume that 4 is a polynomial in the arguments
indicated in (7.1), we can then express A as a function
of joint invariants of the arguments in (7.1), as well as
BS. This may be accomplished in a manner similar to
that discussed by Green, Naghdi, and Wainwright,”
where other references to more general and recent
developments on symmetry restrictions may also be

found.
8. SPECIAL CASES

In this section, we discuss special cases of the theory

of an elastic surface with simple force tripoles. We

recall that for an elastic surface, in addition to the
constitutive equations (7.9) to (7.13), we have the
symmetry restrictions (6.12) and (6.13), the trans-
formation relations (5.18), (7.4), and (7.5), the
equations of motion (6.1), and the equations (6.2),
(6.3), and (6.4).

The number of components of surface forces N,
NisB, Nv@B) which are present in the above field
equations is 6 + 12 + 18 = 36. However, not all of
these are independent of each other; the restriction
(6.13) is identically satisfied and (6.12) provides
1 + 2 = 3 equations which various combinations of
G, G'=#, G*#7 must satisfy. We thushave 36 — 3 == 33
independent components of forces and the constitutive

19 A E. Green and J. E. Adkins, Large Elastic Deformations
(Clarendon Press, Oxford, England, 1960).
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relations (7.9) to (7.13) supply3 + 3+ 6 + 4+ 8 =
24 equations relating these to the kinematic variables,
thereby leaving 33 — 24 = 9 components of forces
indeterminate. Alternatively, we may regard (7.9)
and (6.12) as equations for G4#), Gt4+1 and G*, (7.10)
to (7.13) and (6.13) as constitutive relations for
Giep) GieBy) | and G, If we write G*'@®) in the
form

G;‘y(aﬁ) — %{Giy(aﬂ) + Gia(ﬂy) + Giﬁ(ya)}
+ %[Giy(aﬂ) _ Gia(ﬂy)] + %[Giy(aﬁ) _ Giﬁ(ya)]

= Gi(‘,’aﬂ) + Gi('YGﬁ>, (8-1)
where we have set
Gi<raB> — %[2Giv(aﬂ) — G _ Giﬁ(va)]’ (8.2)

then we see that G*#] with 3 independent components
and G¥*7 with 24 — 6 — 12 = 6 independent com-
ponents remain unaccounted for, and the total number
of indeterminate components is again 3 + 6 = 9.

In order to provide a determinate theory of simple
force tripoles, we set

Gi[aﬂ] = 0, ' Gi(aﬂy> = 0. (83)

It then follows from (8.3), (6.13), (7.12), and (7.13)
that

G = GIP), Givb = Gilvap) 8.49)
and instead of the restrictions (6.12); and (6.13), and
the equations (6.2) to (6.4), we now have

NG® 4 NG _ plns 4 ofa) — GUa) (g 5)
NG 4 N — BN 4 g = G, (8.6)
N* 4+ NP& 4 b, N + pf** = G*,  (8.7)
NHaP | Niuah) _ pANswed) 4 pFied) _ GHaD (gg)
N1 o Pfltulﬂ =0, 8.9

N3P 4 N?‘(Luaﬂ) + b,wN”"“’” + pf B = G3¥P),
8.10)
N8l 4 pf30as) = (8.11)

N3@B) — G3eBY  NBafy _ N3@ED = N3G@AY _
(8.12)

N}.(aﬂy) — Gi.(aﬁy), N2y _ N}.(aﬂv) = Nl(aﬁv) =0,
(8.13)

where G, Gi@P) Gi=? are specified by the con-
stitutive equations (7.9) to (7.13), G** is given by the
relation (6.12), and G'#?! is determined from (6.12),.

We return now to the general theory without using
(8.3) and no longer admit the simple surface and body
force tripoles, i.e., we set

nieh = i = 0, (8.14)
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Then, by (7.5) and (6.4),
G = NP = (. (8.15)
It follows from (7.12) and (7.13) that in this case
0A4/9(bg,) = 0A[0(Asa5,) = O,
so that (7.1) assumes the form??
A= A(T, ey, kop»> Aupy)s (8.16)

all other constitutive assumptions become independent
of b,py, and A,g,s, and the constitutive equations for
G4 GieB) | the relations (6.12), and the system of
equations (6.2) to (6.4) reduce to

24

G(la) =
P aela

Gl =0, G =b,6", (8.17)

04 04
G* = —pa*'4, [ + ]
! a(Aﬂrla) a(Auvlﬁ

o (8.18)

Ok,p ’
N(la) + NL}"[“]G) - b‘(‘lNana) + P (Aa) G(la)’
Nidal + NB}(#)G] — b‘[‘lelhl] + pf[‘ﬂ] = 0,
N% + N¥= 4 b N¥e 4 of% = G%, (8.21)
Nt = G*#, (8.22)

It follows from an examination of (8.17) to (8.22)
that in a theory in which (8.14) is assumed, the three
components of G remain indeterminate. A deter-
minate theory of simple force dipoles may be obtained,
however, by setting

Gs(aﬂ) = —p

(8.19)
(8.20)

Gl = ¢ (8.23)

from which, together with (8.22), we have
Ne#1 = 0,

Thus, for a determinate simple dipolar theory of an
elastic surface, the relevant field equations are the
equations of motion (6.1) and the system of equations
(8.17) to (8.23).

Within the scope of a simple dipolar theory [corre-
sponding to (8.14)] if, instead of (8.16), we admit a
restricted assumption for the free energy A in the

form
A = AT, ey, kup) (8.24)

and also assume that all other constitutive assump-

0 The dependence of 4 in (8.16) on initial values of the first and
second fundamental forms is understood.
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tions aré independent of A, ,, we can then conclude
from (8.18), that G**#) = 0. If we also admit (8.23)
by (8.22) and (7.4), we then have

N4 = 0, n* =0,
N3eBY — 0, n¥ = NS(aﬁ)'l’a-

Recalling the rate of energy equation (5.13), in view
of (8.25) and for consistency we should also put*

pfe = 0. (8.26)

We call the theory in which A4 has the form (8.24), the .
restricted simple dipolar theory. The field equations
of the determinate restricted (dipolar) theory are
given by (6.1), (8.17), (8.18),, (8.19) to (8.21), (8.25),
(8.26), and with

N* = G* = 0. (8:27)

These field equations of the restricted dipolar theory
(aside from differences in notations) are the same as
those obtained previously” in the special case that the
directors are identified with the unit normals to the
surface at all times.

We return again to the original theory without
specifying the indeterminate functions. If in addition
to (8.14) we also set

n" = f* =0, (8-28)
then the special case of monopolar theory will result.
From (8.28), together with (7.4) and (5.29), , we have

N = G = 0. (8-29)

It then follows from (8.29) and (8.18) that for the
monopolar theory,

A sl A(T, eap),

(8.25)

(8.30)

and we can easily recover the equations of the mem-
brane theory as given by Green and Adkins.?
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21 Our motivation for requiring (8.26) stems from the fact that
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implies (8.26).
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The redundancy of the Bargmann-Wigner equation for free particles of spin S greater than one-half
is analyzed. Only 2(28 -+ 1) equations involve an essential time derivative, as is well known. An addi-
tional #(S + 3)(4S% — 1) is required to define all components of the representation. The remaining
(8 + 1)(4S* — 1) are time derivatives and divergence conditions; the latter occurring doubly.

F one has a state comprising N independent, free
particles that obey the Dirac equation the wave-
function would be a product

N
Y= I=I1 (&) Pu)y ey

where &i give the four spin functions (i = 1, 2, 3, 4)
and p,; the four-momentum of the »th particle. Each
would have its own y operators and mass m, and the
wave equation is

Yp ¥ =m¥ (v=1,2,-,N). 2)

Bargmann and Wigner! have proposed that the rela-
tivistic wave equation for a single particle of total
spin S and mass m be derived from Eq. (2) by setting
all m, equal to m, all p,; equal to a single four-vector
P and requiring the wavefunction, Eq. (1), to be
symmetric in spin labels ». The y¥ for different »
(which is now to be considered as a position number in
a polynomial) still commute. The wave equation is
then
b — m¥e..y...n =0,
(»*=1,2,---,N), N=28.
Since the wavefunction is symmetric the normalized
basis states are uniquely designated by the numbers
n; which give the power to which the spin state &
occurs in the polynomial. Each such polynomial
contains
C(ny, ny, ny, ny) = Nln !yl ngl ng!

3)

©)

orthogonal terms so the normalizing factor is
C(ny, ny, ny, ngy%. The component belonging to a
normalized basis function is denoted by |n, , ng, 1y, 1,).
The total number of components belonging to a given
spin S is just the number of choices of the #; so as to
keep

>n=N=28S.

i

1Yy, Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U.>. 34,
211 (1948).

First consider the subset of states in which exactly
g of the n, are not zero, so that there are four such
subsets, one for each ¢ value of 1 to 4. The number of
choices of i to be represented in each case is then

(:) T (421 D!

The number of partitions of N into ¢ parts is

(N = DY = DIV ~ .
The total number of states is therefore

: 24N — 1)!
D(N) =
w «;q!(q—l)!@—q)!(N—q)!

= 3(N + D(N + 2)(N + 3). ®)

The apparent number of equations is obtained by
multiplying each term by ¢ before summing;
S 24(N — 1)!
Ei=2 ! 2( )v !
=1 llg = DIFE — ' (N — 9!
= §N(N + 1)(N + 2). ©

The ratio of number of equations to number of states
approaches 4 for large S. The equations are therefore
redundant and it is the purpose of this note to identify
the redundancy, part of which is mere duplication of
equations.

Let us define the operator |k){m| that acts upon a

state |*--mpcc my, ) =|ny,ny,n3, Ny SO as tO

produce

Ll NEERE RS S
=|...nk+1,...nm_1’...>

or =0, if n,=0.

Taking the normalization factors into account we may
write Eq. (3) more explicitly

{nk(po — m) — (n, + D} 181 (p, — ip)
— (s 4+ DERXU p,} Iny, ng, 1, m) = 0,
(7a)
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{ndpo — m) — (ns + D302 @, + ip)

+ (g + DH®HQI p,} Iny, ny, ng, ny) = 0, ()
{—nkpo + m) + (n, + V¥ 123 (2o — i)

+ (ny + DG p,} Ing, nay 1, 1) =0, (76)
{=nkpy + m) + (n, + D} 11)4] (2, + ip,)

— (ns + D2)@1 p,} Iny, ny, n5, np) = 0. (7d)
Eliminating p, — m from Eqs. (7a) and (7b) we get

nb(ng + DXp, — ip,) Iny — 1, ng, ng, my + 1)

+ "g("a + 1)%Pz Iy — 1, ny,n3 + 1, np)

~ n¥(ns + Do, + ip,) Inys my — 1,mg + 1, 1)

+ n¥(ny + Dp, Iny, my — L g, g + 1 =0. (8)
Similarly, eliminating p, + m from Eqgs. (7c) and (7d)
(and using r, in place of n,) we find
s+ D}, — ip) Irsre + L — Lr)

+ i+ Dl I+ Lreyry = 1,1

- ’%("1 + I)Q(Px +ip)ln+ Lir,r,r—1

+Ar+ Ol Ly — 1) =0. 9
If we now substitute in Eq. (9),
ro=ny—1, rg=mn+1,
ri=n+1,

r1=n1‘—1,

it becomes identical with Eq. (8). This means that for
every function in which both »; and »n, do not vanish
there is another giving the same equation. The same
holds if neither n, nor #, vanish {(even though a,, n, do
s0). The total number of such equations in which
n, and n, are not zero is D(N — 2)

D(N ~ 2) = gN(N2 — 1)
plus an equal number in which n; and n, do not
vanish. These equations may be written

pB=0 (10)
with
iB,(ny, ng, ng, ny
= 2nd(n, + ¥ in, — 1, my, 1y, 1y + 1)
- "%(ns + 1)% Iny, ng —1,n5 4+ 1, ny),
iBy(nls n23 n3s n4)
= =2k, + D¥Iny — Ly, g, my + 1) (1)
+ ndng + D¥img, ny — Ly + 1, np},
iBz("l’ My, Ny, n4)
= nd(ng + D¥iny — 1, nay g + 1, 1)
+ n%(n.! + 1)* Inli By — 1‘9 Ny, Ny + 1>-

One can see from the general form of Eqs. (7) that
Po» 1.€., the time derivative, can be eliminated from
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all but a few sets of equations and the function solved
for directly. Those states for which p, must be retained
are those with g == 1 (only one s, not zero) of which
there are four and those with ¢ = 2 such that either
ny and n, or nz and ny are the nonvanishing numbers.
Then the properly weighted sum would seem appro-
priate to obtain equations in (p, — m) or p, + m,
respectively. Since there are N — 1 partitions into
two parts of N there are 2(N — 1) such functions,
or with the four with only one n; nonzero a total of
2(2S + 1) equations involving a time derivative.
After substitution from the equations that do not
confain p, these are equivalent to Hamiltonians®
or propagators of the 2(2S + 1)-dimensional repre-
sentations.?

In all remaining combinations of »,, Egs. (7) can be
solved for m |ny, ny, ny, ny) directly to give a complete
set of (N + 1IN 4+ 2)(N + 3) equations for as
many functions. There exist in addition the same
number as for m|---), viz.,, #(N + 6)}(N? — 1), for
DPolny,ng, ng, n,) plusthose of Eq. (10), i.e., :N(N? — 1),
counting each twice. The sum

#HN + DN + 2)(N + 3)
+ N + OV — 1) + INV? — 1)
= §NNV + (N + 2) = E4.
As a simple illustration we determine the Proca
equations. The functions of spin one that have ¢ = 1
and g = 2 with i equal to 1 and 2, and 3 and 4, are
six in number, viz.,
a, = [2000), a, = [0200),
a, = [0002), by, = {1100),
and may be arranged as follows:
md, = —i{a, — ay — a; + a,},
mA, = +{a, + a; — a3 — a,),
mA, = iv/2 {byy ~ ba},
E,=ay—ay+ a3 — ay,
E, =i{a) + a; + a3 + a,},
E, = —2{byy + by}.
Replacing p, = i9/dt, p— —iV in Egs. (7) the six
essential equations with p, are, in vector form:

(0A/0)) + E + Vo = 0,

ay = [0020),
byy = |0011),

(GE[d1) — V x B — m?d = 0, (12)
with B from Eq. (11) and
my = +iy2 {{1001) — [0110)}. (13

* D. L. Weaver, C. L. Hammer, and R. N. Good, Jr., Phys. Rev.
135, B241 (1964).
8, Weinberg, Phys. Rev. 133, B1318 (1964),
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The four equations in m |ny, 1y, 15, ny) are

B-—VxA=0 mi¢+ VE=0O, (14)

completing the necessary 10. As suggested by Foldy,*
one can substitute from Eq. (14) into Eq. (12) and
obtain a form of Hamiltonian in the six-dimensjonal
representation. This Hamiltonian is quadratic in
space derivations. Equations (7) shows that there are
16 apparent equations and of these the divergence
equation occurs twice, Viz.,

V-B=0, (15)

which corresponds to Eq. (10) and which follows

from Eq. (14). The remaining four are readily seen to
be

(@B/of) + VX E =0,

(@plo) + V-4=0,

i.e., time derivatives that are derivable from Eqs. (12)
and (14). ,

The Bargmann-Wigner equations have the property
that the Kiein-Gordon wave equation follows at once
from Eq. (3) and

Yoty = 28R an
They remain linear in p but require a representation
larger than the minimum 2(2S 4 1). The large
representation is generated not only by the Lorentz
transformation on spin of which the infinitesimal
operator is the six vector S*! but by the four * of Eq.
(3). The algebra of this group is given by ([a, b] =
ab — ba)

[ 7] = —4is®,

[Smn, ?k] -— i(gnk,ym — gmk,yn), (18)
{Smn’ Skl] = i{gknsml — gkmsnz — gmsmk + glmSmn}.
The group is of rank two and order ten and the algebra
was designated originally as B, which is isomorphic

(16)

4 L. L. Foldy, Phys. Rev. 102, 568 (1956).
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with what is known also as C,. Bhabha® has investi-
gated the relationship between relativistic waves of
higher spin and representations of B,. Here we prefer
to use the notation more commonly applied to the
C algebras. An irreducible representation of C, is
given by two integers, {N,, Np}, which constitute its
highest weight. The maximum spin in such a repre-
sentation is

S = }Ny — Np). 19
The other diagonal quantum number is that of

Y= N, + N,.

Substates of {N;, Np}, (N; > N,), are derived from it
by permitted subtractions of the ‘“simple roots,” ¢
(1,~1) and (0,2) and with proper attention to
multiplicity of weights, The point here is that sym-
metric functions such as considered above have
highest weights of the form {N, 0}, i.e., N; = 0. For
a given § there are, according to Eq. (19), infinitely
many representations and it might well be more
appropriate to use {2, 1} in place of {1, 0} when S = }
if the system is made up of three fermions. The
dimensionality is given by Weyl’s formula and is

D (N 1 N, 2)
= }(Ny — No + DN, + DNy + N + 3N, +71).
(20
A particular application of nonsymmetric repre-
sentations would be to use the five states of {1, 1} to
get wave equations for a particle of spin zero.
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A solution to the steady-state, two-dimensional Boltzmann equation is obtained for the flux due to
a point source of neutrons located in a system of two adjacent half-spaces having the same mean-free
path. Isotropic scattering and monoenergetic neutrons are assumed. The solution for an arbitrary
source location is related to that for an interface source which is obtained by the Wiener-Hopf technique.
Asymptotic expansions for the flux far from the source, both along and away from the interface, are

derived and compared with approximate theory.

OLVING neutron transport problems which have
one spatial variable can be accomplished, for
instance, by using the Case! technique. When more
than one such variable is present, the differential
Boltzmann equation has not yet been successfully
treated with this method. An alternate method of
solution—the Wiener-Hopf technique—can, however,
be applied to some two spatial variable problems when
the integral form of the Boltzmann equation is used.
Elliot* has applied this technique to the integral
Boltzmann equation to obtain the flux from a point
source of neutrons located in a single half-space. In
the present paper, the solution for the flux from a
point source of neutrons located in either of two
adjacent half-spaces is obtained under certain special
conditions. Here again the Wiener-Hopf technique is
applied to the integral equation describing the
neutron field.

I. MATHEMATICAL DESCRIPTION
OF THE PROBLEM

Consider a point source of neutrons located in one
of two adjacent half-spaces as sketched in Fig. 1.
Assuming a monoenergetic system with scattering
isotropic in the laboratory system, the neutron flux
can be written in the form

+
Peo(T> 2) =fff dx'dy' dz’

X {[C(ZT);(Z") Pl 2') + g8()8()E — z.,)]

e—f(R.R’)
IR —R’[%
1 K. M. Case, Ann. Phys. (N.Y.) 9, 1 (1960).
2 J. P. Elliot, Proc. Roy. Soc. (London) A228, 424 (1955).

ey

Here c(2) is the probability of scatter,
z>0,
z<0;

o(z) is the total cross section in the same notation; ¢
is a measure of source strength; and

r=(x*+ yﬁ)*, R=(+ 29},

7(R, R’), the optical depth,? is the total cross section
integrated from R’ to R:

€15
«(z) =

Ca»

|IR-R‘|
(R, R') = f o(R") dR".
1]

To solve the problem exactly, it was found necessary
to add the restriction o, = 0, = o, which gives
7(R,R’) = ¢|R — R’|. Then Eq. (1) can be written,
in units of mean free path, as

+o
Pe(T> 2) =J:U dx' dy’ dz'

) [C(———z =020 . g0z z.,)]
47
~IR—R’|
X —— .
IR — R'[?

It is shown in Sec. IV that the solution for p, (r, z) can
be written in terms of that for py(r, z). Thus, we need
solve only the simpler problem for the flux from an

interface source.
Removing r by a Fourier transformation yields

+00 n '
plh, 2) = 2m f_ ) dz'[—“iz—)—'iﬁ%z—) + qa(z')]

@

x I(|lz = 2'), (3)

3 B. Davison, Neutron Transport Theory (Oxford University Press,
New York, 1958).
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REGION(2) REGION (1)

€% .9

FiG. 1. Geometry and source
location.

--zoﬁ-i

NEUTRON
SOURCE

INTERFACE \

where

pl(h, 2) = f & po(r, 2) dx dy,

Kz -~ z')) —f L iy fh |z — 2| 0F — D).

@
IL. SOLUTION OF EQ. (3) BY THE
WIENER-HOPF TECHNIQUE

Let us define
y
P (h’ Z), z > 0’
pl(h, 2) = { ’
0, z<L0,
z>0,
pl(h, z) = {
(h z), z<0,
Then Eq. (3) can be written as
Pl(h: Z) + Pi(h’ Z)
-+ o0 1' ’ 1‘ ’
— 21rf dz:[clp-b(h’ Z ) + CsP—U‘: Z ) + qa(zr)]
- 4x 4

X I(lz — z']). (8)

Removing the z dependence by another Fourier
transformation yields

pltn h) + ot 1)
= [capl (h, ) + cop(h, h,) + 4mq]

x [._1_1,11_11'&], ©)
2iH 1—iH

where
pil(h, ) = m,, 1(h, 2) dz,
H = (1 + 1,
Defining S = g/(¢; — c,), and
c 1 1+ iH iH
) =1——""1n =1,2,
™a(H) 2H 1—iH
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h, ~ PLANE

FiG, 2. Inversion path

forz> 0. oo parn —

Jor:

}' 4
permits us to write for Eq. (6),

[o}'(h, h) + 4nSiry(H) = —[p'(h, b,) — 4nSTra(H).

™

Equation (7) is easily solved by the Wiener-Hopf
technique. The result is

pi(h, b)) = H4mS{lrau(h)/r(h)] — 1},

“z | ”7” n+(b
’n«{-(hz) ( . )eq ,)!

NEW PATH

AN,
AN
et
i
~

h, + i&
n—(hz) - (h — iéﬂ) eq,‘_(h,),
h, — in
1 =™ 4 (O + &%)
h,) = — 1
Gnalh) 27Tlfuo=F:'b {— h, n{ 47D }
0<b<§,
E=1+m 9, =0+, T2 =tanh s,

Cn

To recover the z dependence, we have
1 +-00 i
pllh,2) = - ﬁ et t(h, h) dh,

@®
e e"f’*:*[’l&g’—’l— 1] dh,. (8)
= 712(h)

Equation (8) can be simplified by appropriately
deforming the path of integration. For example,
when z > 0, we change paths as indicated in Fig. 2.
Since the only structure in the lower half A, plane is
a simple pole at h, = —in;, and a branch cut
extending from —i§ to oo along the imaginary &,

plih, 2) = 4wq{ (’Z - Z) exp [— 2 + Gai(—iy) — gy, (—ing)]
—

dte™ te{Pl(i)—P.(t)}/f(t — 3?2)(t2

Kt

+2f°°
§

(t - n)[n ((ne)? + 20 — W) — ¢, coth™ (1 — K}

axis, we can write Eq. (8) for z > 0 as
] ,,}, ©®
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where now
1 [° ds
== 8,(s),
4= = [ 0.9
%ch
tan 0,(s) =
© (s — k¥ — ¢, coth™ (s* — )t
and ‘
P(t)=P j 6,(s) ds
¢ s—t

(P = principal value integration).

To obtain the result for z < 0 one need only let
z — —z and interchange the (1) and (2) subscripts in
Eq. (9) to yield the proper pl(h, z).

We can modify Eq. (9), thereby casting it into a
form more closely identified with the Case® solutions
in one dimension. To do this we change the integration
variable in Eq. (9) by setting

v = (12 — bty h,
This yields
1
Pj-(h: 2) = 4nq [a(h)e——ztu +f A(h, 1,)e—::(l-!-hﬂv‘)§/v d‘b’],
0
(10)
with
_ s . .
a) = () exp lgae(—im) — aus(~in)}
81 A C2
- 2, 2\
A(h, ) = 2 %[772” (1 + kP )*:I
»(1 4+ B Ly — (1 + %)

L SR UPIA + W] ~ Pt + 1))/ m)
2 -’
[H ((me)* + {201 — e coth™ (1;:9]}2)]

=1

A similar form exists for z < 0.

1. THE TOTAL FLUX FOR THE
INTERFACE SOURCE

With the transformed solutions known, one can
write the complete solution for the interface point
source as

palr, 2) = 2i f “hdhIhrpl(h, D), (1)

where pl(h, z) is given by either Eq. (9) or the
appropriate form of Eq. (10).

By making both half-spaces identical, it is possible
to simplify Eq. (11) and arrive at the single infinite
medium solution (cf., Ref. 3). Setting ¢, = 0 effectively
removes the half-space z < 0 and in this case the
solution, as given by Eq. (11), can be reduced to that
found in Ref. 2 for the half-space problem.

ERDMANN

1V. SHIFTING THE SOURCE OFF-AXIS*

When the source is located in Region (1) (z, > 0),
we can write the counterpart of Eq. (3) as

Pl 2) = [ 8 gl 1z - 21

+ 2mql(]z — zo). (12)

Making the change of variables z —z — 7 and
differentiating yields

Bptelloz=)_ 53 [ i’ =) g _ 1) g
Bn 2 Jew 877

+ ﬁfwapzo*n(h’ z’ "'"’7) I('Z - Z'D dz'
2 7 67]

+ —c—*—g——"—‘ pr (B, OI(|z — D). (13)

But, when z, = 0, Eq. (12) can be written as
1 Y h I N dz’
Po(hsz—n)"'z po(,z—-?y)(fz--zl) Z

+ "5‘ pih, 2’ — |z — 2'|) dz’
n

+ 2mql(jz — 7). (14)

Hence,
phoalhyz =) _ (cz - cl) Proalh, 0)pih, 2 — 1)
on 2 2mq
_ (cz - cl) palh, 2o = Npo(h,z —1)
2 2mg ’

(15)
The last step is a consequence of optical reciprocity.?
Thus we have the desired relation,

prhs 2) = pulhs 1z — )
¢ — € min (z,z¢) s N
+ S8 [T, 2 — nplh, 2o — ) di,
g [
(16)

A particularly simple consequence of Eq. (16)—one
which also follows from optical reciprocity—is that
the interface flux due to an off-interface source is
related to the flux from an interface source by

pa(h, 0) = pi(h, zq). (17

Also, one can seec that the integration required in
Eq. (16) can be easily carried out to yield a pf (, 2)
which contains discrete, continuous and mixtures of
the two types of terms,

% The method used in this section follows closely the ideas
expounded in Davison, Ref. 3.
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V. ASYMPTOTIC EXPANSIONS
WITH THE INTERFACE SOURCE

The complicated nature of Eq. (11) can be reduced
when either |z] or r is large. For z large and positive,
the continuous term in Eq. (9) is small compared to
the discrete term and its neglect in Eq. (11) yields the
asymptotic estimate

pitn (22 ) (Gl - (o)
(Tl €y Cy 41
e—(3a1/cl)§[z+(r3/2z)]
X (eB+u-) (———~——~———) Z2»r>0,
a, <c, (18)

where a, =1 — ¢, and the g¢,. are evaluated for
h=0.

In the case of weak absorption (2, K¢, <1),
Eq. (18) can be further reduced to

6 e~ Bap a2
P+(rsz)"’|: 4 %][ ']:
L1 + (agfay) z

z»r>0 (19
Similarly, for z « 0 and weak absorption, we find

6 e~ Ba izl 212D
P__(r, Z)N [ q %][ )]’
1 + (a,/as) 2|

—z»r>0. (20)

When there is no absorption in the half-plane
z > 0, Eq. (11) has a somewhat different expansion
for large z. Here we find

pa(rs )~ [zﬁ 1l

(‘12)%

z

z — {f(1) — f(e)} )
{lz = {f(1) = fe))® + r}F)
z»r>0, ¢=1, (19a)

where f(k) is defined as

k[ ki
KH=-1]tdt1
fw=3| [+1_t2]

1
X
I:(l — ktanh™ 1)® 4 (%n-kt)z]

This f(k) function is similar in structure to the
extrapolation distance integral for z, found in Ref. 5.
The difference of the two f(k) functions in Eq. (19a)
can thus be thought of as a difference in two extrap-
olation distances. For z<« 0, Eq. (20) is still
asymptotically correct in this case (¢; = 1.0) provided
we set q; = 0.

For large r, a simple nonzero asymptotic expansion
is found only in the case of one nonabsorbing and

5 K. M. Case, F, De Hoffmann, and G. Placzek, “Introduction
to the Theory of Neutron Diffusion,” Los Alamos Scientific
Laboratories (1953}, Vol. 1.
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one absorbing half-space. Assuming ¢; = 1, one finds
here that

q| /3

2
P+(?‘, Z) ~ 7‘3 (ag)%

1 foo e—pz(p _ Toe)e(xlar)[Pl(p)-—Pg(p)]
2 J1

2 ¥
[IT o~ cucom™ p* + e}
n=1 -
@y
When a,, # 0 in any of the half-spaces the asymp-
totic expansions for large r in these regions contain
integrals involving Bessel functions which vanish,
Hence, no useful asymptotic solution is available in
these cases.

[ - U - seean + —5}

Toz

VI. COMPARISON WITH APPROXIMATE
THEORY

It is possible to solve the two region interface
source problem in diffusion theory. Here one has for
the interface source,

—3V2pp(r, 2) + a,pp(r, 2) = 4mgd(x)8(»)0(z). (22)
The solution to Eq. (22) is readily found to be

x —an]zl
ool 2) = 64 f h dhJy(hr)e
o oy - oy

23)
with

%y

{“1 =+ 3a)t, z>0,
gy =2+ 30, z<o.

Expanding Eq. (23) for large |z|, when absorption
is present in both half-spaces, yields Eqs. (19) and (20)
for z3» 0 and z « 0, respectively. This is consistent
since neutron diffusion theory has, as onme of its
assumptions, weak absorption. When absorption is
absent for z > 0, diffusion theory yields the asymp-
totic form

2\/5 q z
(a)t (2 + Y’
which is similar to the exact expansion, Eq. (19a),
save for the factor [f(1) —f(cy)]. However, when
absorption is made weak in the half-space z < 0, this
factor tends to zero and the two expressions agree to
the first term in their respective series.

Asymptotic expansions for large r in the diffusion
theory approximation also have a nonzero value only
in the case of no absorption in one of the half-spaces.
For the case of ¢; = 1, we find here that

L, e o
2.

pp(r, z) ~ z»0, (249

PD(r’ Z) ~
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Comparing this with Eq. (21), we see that diffusion
theory gives only a discrete term and this term
compares favorably with exact theory only when
absorption is weak for z < 0. The exact result
contains an additional continuous term which is
expected to contribute strongly to the flux near the

interface.
V. REMARKS

Based on this and previous work, it is now certain
that any half-space problems in mono-energetic
transport theory with isotropic scattering can be
solved exactly if the mean free path is spatially
invariant. Since the kernel that results when this last

R. C. ERDMANN

restriction is relaxed is quite complicated, it is not
expected that the analytical method used -above will
be successful in the more general, unrestricted cross-
section, problem. An analysis based on the differential
form of the Boltzmann equation may be required
before this problem can be done exactly. However,
one may be able to approximate the solution to the
more general problem by following the suggestions
given in Ref. 6 on degenerate kernels. Work is now
proceeding along this line. Some numerical work is
also being done using the results of this paper.

8 L. V. Kantorovich and V. 1. Krylov, Approximate Methods of
Higher Analysis (Interscience Publishers, Inc., New York, 1958).
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Upper and lower bounds for thermodynamic averages of the form ({4, A1}) are presented.

THE purpose of this brief note is to present bounds
for thermodynamic averages of the form ({4, 4'}).
From the lower bound we can derive a special case of
the Bogoliubov! inequality. Our lower bound when
applied to the one- and two-dimensional isotropic
Heisenberg magnet? yields the same result as found by
Mermin and Wagner.? Explicitly our lower bound is

({4, A}) 2 ([4, A™) coth (3p(w)), M

where (w) is an average frequency computed from
sum rules as described below. An upper bound for
({4, A}) is given by Eq. (19) below.

The derivation of Eq. (1) is elementary. Let n label

the eigenstates of ®=3- 4N, where X is the
Hamiltonian, x4 the chemical potential, and N the
number operator (for simplicity we assume a homoge-

* Supported in part by the Advanced Research Projects Agency.
This paper is a contribution of the Laboratory for Research on the
Structure of Matter, University of Pennsylvania.

1 N. N. Bogoliubov, Phys. Abhandl. SU6, 1, 113, 229 (1962);
see also Ref. 3,

2 The proof that the spontaneous magnetization for these systems
vanishes for nonzero temperature is similar to that found in Ref. 3.
We obtained the same upper bounds for the low-field magnetization
as in Ref. 3.

(19.6N) D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133
6
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neous system), so that
R |ny = E, |n). @
Using a grand canonical ensemble one has
A4y =3 Wo(m| A |n)n| Alm),  (3)
where i
W, =e ~BE /z ebEn 4
Equation (3) may be manipulated to give
t Wy — Wa 2 ﬂ(Em
)= 3 e o Al g
&)

Define ¢(x) = x/(e* — 1), in which case Eq. (5) is of
the form

(A"d) = B 3 pe)p(Br), ®)
where
w,— W,
px) = Z— |(n] A1m)[*8, 52,5 (D)
where 8, . is a Kronecker delta. From (7) one sees

that p(x) is nonnegative and one can easily verify that
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@(x) is convex, i.e., d%p/dx? > 0. Under these condi-
tions one can easily show that

; P(x)@(Bx;) 2 p(B(x)) ; p(x:)s @®)

where

%) = 3 p0dxe/ 3. o). ©

Applying Eq. (8) to the case of Eq. (5), we obtain

s (o)
(' 4) zz > E " |n] 4 ) S 7 (10)
where
Z(Wn - Wm) |<n| A |m>I2
(w) = (11)
W, — W, 2
2 > [(nl A |m))|
Combining Egs. (10) and (11) we find
(A'4) > (4, AD)( ~ 1), (12)

from which Eq. (1) follows immediately.

It is interesting to note that Eq. (1) can be weakened
to give (a) more tractable results and (b) a special case
of the Bogoliubov? inequality. We note that (w) as
defined by Eq. (11) may not be a convenient quantity
since the denominator is not so easy to handle.*
.However, by the Cauchy-Schwarz inequality (w)® <
{w?) so that the inequality (12) remains valid when
(w) is replaced by (w*) = (w?)/(w) since ([4, A']),
(), and {w*) all have the same algebraic sign. This is
easily seen by writing

() = E x;p(x;) / Z p(x;) (13a)

(wty =520 = 3 ) [S st (130
([4, A = 3 x.p(x),

and using the nonnegativity of p(x). Equation (13b)
can be written as

(13c)

z (Wn - Wm)(Em - En) |<n| A |m>l2
*) = 2% , (14
O TS W W [l Almf e
or simply as -
% t
oty = A L, 4D (14b)

{4, A"D
Thus a weaker but possibly more convenient inequality
than (1) is

({4, 41}) 2 ([4, A™]) coth (3f(w*).  (I5)

4 The denominator in Eq. (12) is rather convenient, but a sharper
use of the Cauchy-Schwarz inequality shows that this denominator

can be replaced by X, |Wo — Wal [(n] 4]|m)].

1045

But [coth x| > |1/x] so that a still weaker inequality
is
}{4, A7) > kT[4, AN2/[4, %], A1), (16)

where we have used Eq. (14). The Bogoliubov in-
equality! may be written as

3{4, 4™y > kT [C, ADP/(ICT, &), C, (17)

which is identical to Eq. (16) for the special case of
C = A'. The reason the inequality (15) gives the same
upper bound for the low-field magnetization of one-
and two-dimension Heisenberg magnets as Mermin
and Wagner found? using the Bogoliubov! inequality
is that the dominant contribution to the magnetization
comes from fow-energy excitations in which

limit coth (38w) ~ (3fw)2,
so that nothing is lost in going from Eq. (15) to Eq. (16).

Finally an upper bound for ({4, A'}) is obtained as
follows. We may write

{4, A7) = 3 W+ W) [(n] A Im)]® (182)
_2 w,— W, 2
ﬂgnE ) |(n] A [m)|
X (Wn + Wm} ﬂ(Em —_ En) . (18b)
w,— W, 2
But
{Wn + Wm} ﬂ(Em — En)
W, — W, 2
= ﬂ(Em; En) coth ﬂ(Emz— En) (193.)
<1+ iGPYE, — E) (19b)
so that
(4,4 < ﬂZ £ —E 2 (n| A [m)|?
< (1+ £t - £7)
2
<SEETE 7 o A mp
+Eqa i, a'y. o
Taking 4 = [B, %] would enable one to eliminate the

energy denominators, since (n| 4 |m) = (n| B |m) X
(E,, — E,); however, the commutators are slightly
more tedious to evaluate.
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Spinor fields are introduced into Riemannian space-time in a new way. This approach admits a simple
geometrical interpretation of spinor fields. A linear connection for space~time is derived which describes
both gravitational anid nongravitational forces. It is consistent with a straightforward generalization of
the Dirac equation. This theory also entails a physical interpretation of inertial coordinates, The spin and
current vectors of a spinor field are not in general orthogonal. This lack of orthogonality provides an
absolute measure of one component of the gravitational field as seen in an inertial system.

1. INTRODUCTION

N previous papers! (hereafter called I and II)
spinor fields were expressed entirely in terms of the
real Dirac algebra, and the attempt was made to
provide a physical interpretation for all the invariants
~ of a spinor field and its derivatives. Here we try to
develop a coherent geometrical interpretation of the
same theory. By representing physical quantities in
the geometric algebra of space-time and giving these
quantities a geometrical interpretation, we hope to
establish an isomorphism between physical and
geometrical interpretations of the equations of
physics. To the extent that the analogy between
physics and geometry is completed, a geometrical
theory of physics is achieved.
In I we showed that a spinor field ¢ determines a
map of an inertial frame {y*; . =0, 1, 2, 3} into a
frame of physical vectors {J#}:

Yo IHX) = 9O Px) = p(x)ef(x).  (1.1)

The J# are bilinear vector invariants of the spinor
field y. The Dirac theory provides a physical inter-
pretation of J° and J* To provide a physical inter-
pretation for all the J#, in II we interpreted the J* as
isospin currents. This theory was developed in
Minkowski space-time. What changes are necessary
for it to hold in space-time curved by gravitational
forces ? The answer depends on what properties of the
¥* in (1.1) are physically significant.

In Minkowski space-time the y* are gradients of
inertial coordinate functions x#, i.e.,

12

The y* are also orthonormal. In curved space-time
the y# cannot have both these properties. If we

Y = Ox®,

* Present address: Arizona State University, Tempe, Arizona.
1 D. Hestenes, I, J. Math. Phys. 8, 798 (1967); II, ibid. 8, 809
(1967). We employ notations and conventions set down in these

papers.

suppose that the orthonormality property of the y*
is fundamental, then in curved space-time the y*
cannot be associated with a system of coordinates
unless an additional assumption is introduced. The
theory of spinor fields and gravitational interactions
that follows has been discussed many times in the
literature. A treatment using the real Dirac algebra
has been given elsewhere (hereafter called STA).23
If, on the other hand, we assume that (1.2) is funda-
mental, we relate spinor fields to curved space-time in
a way which has never before been considered. This
is the approach examined in this paper. It has the
advantage that it leads to a geometrical interpretation
of (1.1) without further assumption. It also leads to a
unique determination of inertial coordinates in
curved space-time, but we defer discussion of this
point until later.

In STA the gravitational field in Einstein’s theory
is represented by the y#, rather than by the metric
tensor gf* = y#-9". Thus the y* = y#(x) char-
acterize space~time and its distortion by gravitational
forces. Now let us reconsider the transformation (1.1).
It is composed of a *“rigid” Lorentz rotation of the
tangent space at each space-time point:

7*(x) — €'(x) = R(x)y*R(x) (1.3)
and a change of scale by a factor p(x). Clearly we can
interpret (1.3) as a mapping from a space-time
characterized by the y* to a space-time manifold
characterized by the e. In physico-geometrical terms,
(1.3) is a distortion of space-time due to the presence
of a matter (spinor) field.

We would also like to interpret the scale transforma-
tion as a distortion of space-time. But here we come
into conflict with the physical interpretation of p(x),
for, loosely speaking, p(x) describes the matter density,

? D, Hestenes, Space-Time Algebra (Gordon and Breach Science
Publishers, New York, 1966).

3 The discussion of spinors in Sec. 24 of STA can be related to
Eq. (1.1) by using the methods of I,
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so in regions where matter is not present a scale
transformation by p(x) annjhilates vector fields
because p(x) vanishes there. This is not permissible
from a geometric point of view. We cannot interpret
p(x) as a scale factor unless we “renormalize” scale
transformations so that they do not vanish in any
region of space-time. Evidently we can do this by
requiring that p(x) to go to a finite constant where no
matter is present. From now on we avoid com-
plications in the interpretation of scale transfor-
mations by not talking about them. The Lorentz
rotation (1.2) suffices to show how we interpret
spinor fields as distortions of space-time.

The geometrical interpretation we have given to y
leads to a theoretical understanding of why physical
observables are bilinear in ». We have supposed that
nongravitational fields “make themselves felt” geo-
metrically by producing, among other effects, a
rotation of the tangent space at each point of space-
time. Since Hamilton’s time it has been natural
to represent rotations by bilinear algebraic quantities.
So the bilinearity of the corresponding physical
observables follows from assuming an isomorphism
between the physical and geometrical interpretations
of the spinor fields. Only bilinear functions of o
have a geometrical interpretation, so only bilinear
functions of y have a physical significance.

2. TORSION

We have suggested a geometrical interpretation of
spinors. From this we find the geometrical significance
of the physical equations of motion for a spinor field.

In Riemannian space-time, the directional (co-
variant) derivatives of the ¥* can be written* as

O = Ligy?, 21

where®

Lgﬁ = %g"v(avgaﬂ - aagvﬂ - aﬂgva)‘ (22)

The g,, are determined by the condition g¥’g,; = 95.
Equation (2.1) determines what in differential geom-
etry is called a linear connection for the space-time
manifold.

To find the connection for the space-time manifold
obtained by the distortion (1.3), we merely compute
the directional derivatives of the e*. By differentiating
RR = 1 we can show that the directional derivatives
of R can always be written in the form

O.R = jo.R, 23)

¢ Equation (20.9) of STA.
8 Equation (21.4) of STA.
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where the w, are bivectors. It follows that

O,e* = Lise® + Ho,, €] (2.4)

It is natural to call the w, the torsion bivectors of the
frame {e*}. For (1.3) is a kind of space-time twisting,
and the ““rate” of this twisting, which we call torsion,®
is determined by the w,,.

Physically, in the spinor equation (2.3) non-
gravitational interactions are described by the LZ;.
The distortion of space-time by both gravitational
and nongravitational forces is described by Eq. (2.4).

The curvature of space-time can be described by
the curvature bivectors C,y

[O,, Ople* = }[Cyy, €]. 2.5

By using (2.4), C,5 can be separated into a gravitational
curvature L,; and a torsion curvature ,,.

Caﬂ = Lap + Qaﬁ’ (2-6)
L,p = 3L .e'¢,, (2.7a)
L4, = 0,Ly, — 0,L%, + Lg,L:, — L, LE,, (2.7b)
2.8)

From the C,; one can construct equations for the
gravitational field in some analogy to Einstein’s
equations. But the appropriate prescription for this
certainly involves physical and geometrical ideas
other than those we have already introduced, so we
do not attempt to discuss it here. Solution of this
problem may well require a perfect understanding
of stress—energy-momentum in purely geometrical
terms—something that has not yet been achieved.

Q,p = D05 — Do, — 3o, o]

3. INERTIAL SYSTEMS

The y* are related to a system of coordinates x*
by (1.2). But these cannot be just any coordinates
because the yp# are related to the J# by (1.1), and the
J* represent observable currents. We know that in
Minkowski space-time the x* are called inertial
coordinates, so it is reasonable to use the same name
in curved space-time. To preserve the physical
interpretation of the J#, we must limit the allowable
x* by a mathematical condition. This amounts to a
physical definition of inertial coordinates. In this
section we find such a definition.

An important physical feature of the J* is their
relation to conservation laws. To get a convenient
expression of this we use the fact that the distortion
(1.3) induces a mapping of the gradient operator

O =90, (1)

¢ Our use of “torsion” is related but not equivalent to uses of the
same word common in differential geometry.
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into the gradient operator
0’ = e, 3.2)

for the distorted space-time manifold. The divergence
of the J* can be calculated if we know the gradient of
the spinor field. According to our discussion in I
and II, in all inertial systems the divergence of J*
must have the form
a’r-Jt = pnt. 3.3
A detailed expression for the #* in terms of physical
fields can be read off from Eq. (2.9) of IL.? We have
summarized this expression to emphasize that the
model of strong interactions discussed in II associates
the #* with components of the pion field. It should be
realized, however, that this particular interpretation
is not essential to the ideas discussed here.
If we calculate the divergence of the J# directly, we
get
a’-Jr = pa* + pld - p* (3.4
To preserve the physical interpretation of the J*, (3.4)
must agree with (3.3). Therefore, inertial coordinate
functions satisfy the equation

O-y*= 0% =0. (3.5)

Coordinates satisfying (3.5) are called harmonic by
V. Fock. Fock suggested long ago that harmonic
coordinates should be identified with inertial co-
ordinates in curved space-time.® But heretofore there
has been no physical consequence of this identification
to make it compelling.

As an alternative to (3.5), we can use (3.3) to write
the condition for harmonic coordinates in terms of (1':

O'-et=0" -0O%x*=o*— O¥Inp. (3.6)

Thus, inertial coordinates are distinguished by the
property that the divergence of the associated metric
vector potentials depends only on nongravitational
fields.

We have distinguished inertial coordinates by in-
sisting on the conservation (or “partial conservation)
laws (3.3) for spinor fields. The physical significance
this gives to imertial coordinates can be grandly
summarized in the principle of global relativity®:
Conservation laws have the same form and inter-
pretation in all inertial systems. This is a generalization
of the principle of relativity introduced by Einstein in
his special theory of relativity.

7 Equation (2.9) of II uses [] instead of the [’ used in (3.3). It
scems to make little difference which is used, but this point is worthy
of more careful study. We have used [J’ in (3.3) because it leads to
the simplest coordinate condition—(3.5).

® For further discussion of harmonic coordinates see Sec. 23 of

STA.
® Cf. Sec. 23 of STA.
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Physical identification of inertial coordinates makes
possible an absolute measure of gravitational force,
namely, the gravitational force as it appears in an
inertial system. To see this, consider a “test particle”
with current vectors J#. From (1.1)

JE- T = pyyt - y*p = pg" (3.7
Thus, if we can measure the J#, we can obtain the
gravitational potentials as seen in an inertial system.
Unfortunately, detection of this effect is well beyond
our present-day capacity.

4. COMPARISON WITH OTHER THEORIES

Many attempts have been made to generalize the
linear connection of a Riemannian manifold to
account for nongravitational forces. None have had
any clear-cut success. One of the first and most
ingenious theories of this kind was invented by Weyl.10
Our theory is mathematically related to his, but
differs profoundly in physical interpretation. In Weyl’s
theory the nongravitational interaction is determined
entirely by the “divergence vector”

=0 ¢ =a—Onp. (.1)

Weyl interpreted the ## as components of the electro-
magnetic field, whereas we relate them to components
of the pion field. He interpreted the term [J#1n p as
arising from a scale transformation, just as we did in
Sec. 1. However, Weyl made his theory “independent
of gauge” by assuming invariance under arbitrary
scale transformations, thus making the (0* In p term
physically unobservable in principle. By contrast, in
our theory p is a physical quantity describing the
presence of matter.

Shortly after the invention of wave mechanics
Weyl abandoned his theory because it could not come
to terms with the new wave equation for the electron.
But what was disastrous for his theory is advanta-
geous to ours. For it is one of the strong points of our
theory that the Dirac equation participates in the very
definition of the connection of space-time. Other
attempts have been made to use the Dirac equation
to determine a connection for space-time. But they
founder on the fact that (—1)% appears explicitly in
the Dirac equation. For this fact seems to imply that
space-time has a “complex” connection. What can
that mean in what appears to be a real world? This
problem is resolved in I where (—1)t is given a
geometrical interpretation. The geometrical (—1)¥ is

19 H. Weyl, in The Principle of Relativity (Dover Publications, Inc.,
New York, 1923); Space, Time and Matter (Dover Publications, Inc.,
New York, 1922). An excellent account and criticism of Weyl’s
theory is given by L. Pauli, Theory of Relativity (Pergamon Press,
New York, 1958).
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a critical ingredient in our theory. Without it we could
not have written down even the first equation in this
paper.

5. PHYSICS AS GEOMETRY

In this paper we have proposed a geometrical
theory of “matter” which is in harmony with Dirac’s
equation and Einstein’s theory of gravitation. Although
the theory is incomplete in many respects, the under-
lying presumptions are simple and definite, and we
have not detected any signs that this graft of Dirac’s
theory to Einstein’s will not take. Our method has
been to set up a strict analogy between physics and
geometry, by expressing physical quantities in the
geometric algebra of space-time and by interpreting
the resulting algebraic quantities geometrically. To
provide direction for further application of this
method, it is worthwhile to speculate on how the
analogy between physics and geometry might be
pursued to completion.

The overriding problem is to assimilate or explain
the fundamental notions of quantum theory. We have
gone a long way in that direction by interpreting the
Dirac equation and the bilinearity of spinor observables
in geometric terms. In doing so we have ignored the
probability interpretation of wavefunctions. Yet it
may be questioned whether the probability inter-
pretation is fundamental. Convenient as it is when
applied to the Schrodinger theory, it has many
difficulties when applied to relativistic theories, and
it has not led to any predictions—the supreme
scientific test of a useful concept. It has done no more
than provide a psychological resolution of our
conflicting images of waves and particles. The proba-
bility concept certainly does not account for the wide
variety of conservation laws found in physics. On the
other hand, whenever we have a conservation law,
we can introduce a probability density merely by
normalization. Thus, among electrons charge is
conserved, so by normalizing the charge current
density we have a probability current density. We
could just as well have derived probability con-
servation from energy conservation. In fact, when it
comes to photons that is what we have to do, because
energy is the only conserved physical quantity
available. Even then the probability notion applies in
momentum space but not in space-time. In every
case the probability notion comes in after the fact.
It is not claimed that by these remarks we have
dispensed with the probability interpretation of wave-
functions. We have merely brought it into question
in recognition of the need to reconcile it with the
geometrical interpretation presented in this paper.

A more important problem is to give a geometrical
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account of the discrete nature of physical quantities.
Any such account must be in terms of global geometry.
For in spite of the frequent association of quantum
phenomena with the very small, discreteness is a
global (or integral) physical property. It arises in
many cases because of boundary conditions on the
wavefunction. The description of a many-particle
system including creation and annihilation of
particles seems to be an exception to this rule, and
the formalism of second quantization was developed
to represent it. But Feynman’s boundary condition,
which requires that waves of positive (negative)
energy propagate only forward (backward) in time,
accounts for features involving creation and anni-
hilation of particles without formal quantization.
This strongly suggests that a deeper understanding
of the global properties of fields may provide a
description of particles. To pursue this idea, we must
adopt notions of field and particle which correspond
to notions of local and global geometry. A field has
a local aspect because it assigns a definite amplitude
at each space-time point. But a particle must be
thought of as a global property of a field, so that it
does not make sense to speak of a particle at a point,
but it does make sense to speak of a particle in a box.
The box may indeed be very small, but the property of
containing a particle is a property of the whole box,
not of a point in the box. Thus the notions of field
and particle refer respectively to local and global
aspects of the same phenomenon.

The geometrical theory of “matter” developed in
this paper is entirely local; it deals only with prop-
erties of space-time in the neighborhood of a point.
Like any field theory it can be quantized. Although
this procedure permits a physical description of
particles, it conflicts with the general program of
constructing an analogy between physics and geometry
so long as we cannot provide a geometrical inter-
pretation of quantization. Further, if particles are
manifestations of global geometry, then quantization
is suspect, because it makes little sense to represent
global properties with local operators. If we are to
construct a geometrical theory of physics, it appears
we must look for the reflection of the wave-particle
duality of physics in the local-global duality of
geometry. Nevertheless, we do not know enough to
say that quantization is not the most appropriate
algebraic expression of this duality.!?

A nontrivial application of global geometry to

11 R, Feynman, Phys. Rev. 76, 749, 769 (1949).

12 M., Schénberg has suggested that the algebra of quantum field
theory does indeed have its origin in topological features of space-
time. See especially Sec. 9 in Nuovo Cimento Suppl. 6, 356 (1957).
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physics has never been truly successful and has seldom
been attempted.'® But the mathematical possibilities
are most promising. In recent years mathematicians
have made profound and surprising discoveries in
global geometry.’* Unfortunately, the fact that

18 Noteworthy is the use of de Rham’s theorem by C. W. Misnerand
J. A. Wheeler to account for electric charge, Ann, Phys. (N.Y.) 2, 525
(1957); reprinted in Geometrodynamics (Academic Press Inc., New
York, 1962).

14§ am sorry to say that this statement is based more on hearsay
than it is on familiarity with the discoveries themselves. Having only
one foot over the barrier separating physical and mathematical
geometers, I can give only an inadequate list of references, especially
in regard to the most recent work. I mention only de Rham’s

DAVID HESTENES

physicists are generally unfamiliar with the language
and methods used in these researches is a big barrier
to possible physical application. If the results of
modern global geometry are to be used to further
develop the theory in this paper, it is necessary to
reformulate them in the language of Clifford algebra.
This should be a straightforward and enlightening
task. If it has any relevance to physics, we can be
assured that the relationship is profound.

theorem (already cited in Ref. 11), and generalizations of the Gauss—
Bonnet formula. See S. Chern, Acad. Brazil. Ciencias. Anais 35, 17
(1963), and A. Avez, Compt. Rend. 255, 2049 (1962).
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We prove that the commonly used regularizations for singular potentials are successful. This means
that one can investigate the peratization properties with confidence. A general argument for the success
of peratization, as an approximation procedure, is presented. The class of failures of peratization is
extended to a series of arbitrarily weakly singular perturbations on the inverse fourth potential. The two
results present an unresolved contradiction; some resolutions are considered.

I. INTRODUCTION

HE technique of peratization is designed to give

meaning to a series in which each term is a diver-
gent function of some parameter. This approximation
has been studied in the calculation of the scattering
lengths of singular potentials. We restrict the problem
in several ways. The potential must have its leading
singularity repulsive. At infinite distance we require
that the potential fall off more rapidly than inverse
cubic. We consider only the zero-enmergy problem.
Due to the bound states which exist for any negative
coupling constant, the radius of convergence of ex-
pansions in the coupling constant must be zero. To
overcome this a regulated potential is introduced.
A regulated potential V(g, r, «) satisfies

(1) ¥(g,r, «) is nonsingular for « > 0,

2 V(g,r,0) = V(g,r). M

The most common regularizations are
Vg, r, &) =Hr — 0)V(g,r), #))]
Vig,r,«) = V(g,r, +). )]

* National Science Foundation Trainee in physics.

We prove in the following section that the two
common regularizations are successful. We then
present a general argument for peratization, with
a specific example, and a class of counterex-
amples.

II. REGULARIZATION

Since V(g, r, «) is nonsingular for each « > 0, there
is for each «, an analytic expression for the scattering
length A(«, g) = Y a,(x)g". It may be possible to sum
the series to obtain A(«, g). If now lim A(«, g) = A(g),
then the process of regularization has succeeded. The
common regularizations have not been known to fail,
but there have been no adequate theorems of suffi-
cient conditions or mnecessary conditions.!~® Some
regularizations have been invented which fail.? We
consider the regularization of (3) first.

We write the solutions to the unregulated Schro-
dinger equation as y,(r) = r®,(r), the regular solution

I'N. N. Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964).
2 F. Calogero, Phys. Rev. 139, B602 (1965).
3 M. Cormille, Nuovo Cimento 38, 1243 (1965).
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and y,(r) = r®(r), the singular solution with

lim ¥ = 0.
r=0 1/),(7’)
We know that the asymptotic behavior of the solution
is y(r) v, N:(r + A4), hence there is an expansion
about infinity and
4 = 0;(0)/® (c0). &)
We then turn to the regulated problem which is solved

@

Wr, ) = @)y r + «) — p( Oy, (r + o) Q)
moo (r + a)['/’s(“)d)r(w) - Q/)r(a)q)s(w)]
+ [p()P(0) — p(0)@(0)]. (7)

Since the coefficient of r must be finite, and ®,(o0) is
defined, @, (o) is also defined; and again since the
scattering length exists for the regulated potential,
®;(0) exists. Hence

Ay = [OIPVU0) = Oe) | o
['Ps(“)/ wr(“)]q)r( CD) - (I)s( OO)

Then as « — 0 the correct scattering length is regained;

hence the regularization procedure ¥(g,r, o) =

V(g, r + «) has succeeded for any singular potential.

In a similar fashion, we obtain for the regularization

@

DY) Py(o0) — DYx)DI(e0)
" DY0)®,(00) — DYa)D(c0) |

A=) ®)
Now if one function is more singular than another,
its derivative will be more singular than that of the
other. Thus the & regularization also works.

III. PERATIZATION

For a series, each of whose terms diverges as a
function of a parameter, the first peratization approxi-
mation is made by summing the leading singularity
as a function of « in each order of g, then taking the
limit of the resulting expression. The second peratiza-
tion approximation is made by summing the two
greatest singularities, etc. We term a series, each of
whose terms diverges as a function of a parameter,
peratizable if in each order of approximation, the
sum is finite, and the approximation is improved.

The following theorem can be proved: The sum or
product of an analytic function with the peratizable
representation of another function is again per-
atizable. The same result no longer applies in general if
both functions are in a peratizable representation. Con-
ditions on the orders of the singularities can be set
up which allow this, in particular if the singularity
structure is the same, then the sums and products of
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two peratizable functions are peratizable. We now ex-
tend the argument given previously for regularization.

We recall Eq. (8) and suppose that the sum of the
leading singularities in each order for [y,()/w. ()]
diverges as « — 0 (which, considering its behavior as
o — 0, means that it can be peratized). If we perform
all the multiplications and additions before taking
leading singularities, then some of the nonsingular
terms of @, or ®, may be neglected in their order of g.
As long as only a finite number of singular terms
occurs in each order of g, we recover this information,
in successive approximations. We expect to be able to
divide the two peratizable functions in the numerator
and denominator because of their similarity of singu-
larities, though after multiplication they may no
longer be associated with the same order of g.

A number of examples of solvable cases have been
given previously*~¢; in each case the argument can be
followed explicitly. As a definite example we consider
here the potential g(r—° + ¢r—*), which is similar to
the case studied by Pais and Wu,® but solvable in
readily visualized functions:-

¥(r) =r Ai(g}¢ + ), (10)

where Ai and Bi are independent solutions of the
Airy equation. The scattering length is

A ) =g AV @AY,
The scattering length for the 4 regulated potential is

Bi' (@7 + ¢)) Al (v¢)
— Al ()" + ¢)) Bi' (v¢)
Bi' ((«" + ) Ai (v¢) ’
= Al' (2" + 4)) Bi (7¢)
(12)
where y = |g}]. As «—0, A(g, ¢, @) = A(g, $). The
summation of the leading singularities of the directly
calculated Born series gives

Bi' (oY) Ai’ (0) — Ai’ (ya?) Bi’ (0)
Bi’ (yo™) Ai (0) — Ai’ (ya ) Bi (0)°

as can be most readily checked by Egs. (10.4.2) of
Ref. 7. This gives a limit of y Ai’ (0)/Ai(0), the
scattering length of gr=5.

The answer is no longer exact; however, for small
¢, positive or negative, it is excellent approximation.

Ag, ) =y

(13)

4 F. Calogero and M. Cassandro, Nuovo Cimento 37, 760 (1965).

5 W. A. Gale, J. Math. Phys. 7, 2171 (1966).

8 A. Pais and T. T. Wu, J. Math. Phys. 5, 799 (1964).

? Handbook of Mathematical Functions, M. Abramowitz and
L. A. Stegun, Eds. (U.S. Government Printing Office, Washington
D.C., 1964).
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The summation of the second terms gives a term
linear in ¢, or the slope of A near ¢ = 0 which
improves the approximation. The region in which
the power series in ¢ for 4 converge is the circle
about the origin with the radius equal to the
distance of the nearest singularity: |¢| < g* 2.338.
We see that this is exactly the nearest zero energy
bound state.

Calogero and Cassandro® considered a potential
with an exponential singularity. Their results can be
similarly interpreted.

The evidence is not so complete, nor so convincing
for the weak singularities multiplied by an inverse
power.2® We examine the Born series of grigp(r),
where ¢(+4¢€) > 0, r¥lg(r) v rl, and r¢'(r) is less

]

singular than ¢(r). Examples of such functions are
in@/P, > 1; In[ln( + D]; In {ln[In (r + €)]};
giving a series of extremely weak singularities. The
leading singularities of the & regulated Born series are

8,

o

—A(a)=g£(a—)—§g=¢z(a) lgags?’(:‘)__
oL o o

(14)

This is established by one integration by parts, the

residual integral being less singular than the product

removed. Thus

A(x) = —ggk(a) tanh [(ge()/)t] v, — glopd(a),
(15)
which lacks a limit in the cases cited.
Unfortunately the cases cited are not solvable so
that the breakdown of the general argument presented

8 H. H. Aly, Riazuddin, and A. H. Zimerman, Phys. Rev. 136,
B1174 (1964).
? T. T. Wu, Phys. Rev. 136, B1176 (1964).
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cannot be localized. We note with Cornille® that the
expansion above for the hyperbolic tangent does not
have an infinite radius of convergence, and the con-
tinuation assumed may well be incorrect for small «.
Secondly, the essential quality of ¢(r) above is the
weakness of its singularity; Wu® has suggested a
reinterpretation of the cutoff parameter in one such
case, and the suggestion is easily generalized for such
weak perturbations.

IV. CONCLUSION

The success of the peratization program assumes
the previous success of the regularization process. We
have proved that the two common regularizations are
successful.

Building on this result we have shown why we
expect the peratization to be successful. We have, on
the other hand, extended the class of potentials for
which peratization appears to fail. These are a series
of arbitrarily weak singular perturbations on an
inverse fourth power potential.

We expect the peratization program to be valid as
an approximation procedure at least for potentials
without singularities weaker than a pole. In the
exceptional cases cited, an additional prescription
due to Wu gives an approximate answer.
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The excitation of an infinite array of parallel semi-infinite metallic plates by a uniformly moving
point charge is studied by the Wiener-Hopf method. The problem is treated as a boundary-value
problem for the potential of the induced electromagnetic ficld, and is formulated in terms of a dual
integral equation for the current density induced on the plates. The solution of the dual integral equation
gives exact expressions for the induced current density and the induced field in the form of Fourier
integrals. The Poynting vector is calculated, and the radiation shows that the array of plates behaves
both like a diffraction grating and a series of parallel-plate waveguides.

L INTRODUCTION

HE problem of the excitation of a conductor by a

moving point charge has considerable practical
importance. In many cases the radiations emitted
during the process supply valuable information on
the motion of the point charge. On the other hand,
this process can be used as a means of generating
electromagnetic radiations. Of special interest are
conductors possessing periodic geometries, since in
such cases the emitted radiations show regular
characteristics reflecting this periodicity.

In this work we take the conductor to be made up
of an infinite array of conducting half-planes spaced
evenly with a constant separation d, so that if we set
up a rectangular coordinate system the half-planes, or
plates, can all be located in the lower half-space
y<0at x=0, £d, +2d, ---. The edges of the
plates all lie in the z—x plane, parallel to the z axis. To
simplify the problem we consider the plates to be
infinitely thin and perfectly conducting. Such ideal-
izations are, of course, not realizable in the laboratory,
and are thus valid only under restricted conditions. In
this case if we resolve the electromagnetic field into
its frequency components, the assumptions of zero
thickness and perfect conductivity hold if A 3> T 4,
where T is the thickness of the plates and ¢ is the
skin depth corresponding to the wavelength 4.

The point charge carrying a charge e moves in the
upper half-space y > 0 with constant velocity v in
the positive x direction. Its trajectory lies at a distance
a above the x axis. We do not consider a nonzero y
component of the velocity, since this brings in the
further complication of transition radiations emitted
when the charge pierces the plates. Also the z com-
ponent of the velocity is taken to be zero, since
its effect is merely a uniform shifting of the whole
situation in the z direction. The assumption of uniform

motion of the point charge implies either that the
constant velocity is maintained by an external agent,
or that the interaction between the point charge and
the plates does not alter the motion of the former
appreciably. The second statement is clearly not true;
for since the plates are infinite in number, any effect
of the force exerted by one plate on the point charge,
however small, will multiply indefinitely as the charge
traverses the plates in succession. Nevertheless, in
the laboratory we can only construct a finite array of
plates to which the infinite array in our calculations
is a convenient approximation. So in practice when
the transition time of the point charge across the
finite array of plates is short, the velocity of the point
charge may well be considered uniform.

It is well known that a point charge moving
uniformly in vacuum does not radiate. The radiation
is therefore attributed entirely to the current density
induced on the plates by the passage of the charge.
Clearly, our problem is solved if we can calculate this
induced current density. In the following the induced
current density is found to satisfy a dual integral
equation which can be solved by the Wiener-Hopf
method. In the 1940’s the Wiener—Hopf method was
introduced by Copson® and Schwinger into the study
of electromagnetic diffraction by semi-infinite metallic
structures. This method was immediately used by
several authors? in a series of papers to obtain rigorous
solutions to the problems_of the excitation of an
infinite set of metallic plates by monochromatic
plane waves. The polarizations of the plane waves were
so chosen that the essentially vectorial problems
became two-dimensjonal and thereby scalarizable.

The problem we are going to solve is really an

L E, J, Copson, Quart. J. Math, 17, 19 (1946).
1 3. F. Carlson, A. E. Heins, Quart. Appl. Math, 4, 313 (1947); 5,
82 (1947); A. E. Heins, ibid. 8, 381 (1950).
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electromagnetic boundary-value problem. The bound-
ary conditions to be satisfied are three in number,
Firstly, there is the outgoing wave condition which
requires the solution to assume the form of an
outgoing wave at large distances from the sources.
Secondly, there is the well-known condition on the
electromagnetic field at the surface of a perfect
conductor. Finally, there is the edge condition which
is peculiar to problems involving surfaces with sharp

edges.? It prescribes definite behavior on the induced

quantities in the vicinity of the edges, and is intimately
connected with the uniqueness of the solution. In
the following the first two conditions are directly
applied in the formulation of the problem. The edge
condition is found to be automatically satisfied by
the solution obtained.

II. FORMULATION OF THE PROBLEM

Without loss of generality we can take the point
charge to be at the point x =0, y=a, z=0 at
t = 0. Then its motion produces a current density
Jx, y, 2, 8) = ecd(x — v1)0(y — a)d(z) (8,0,0, ),

m
where f = v/c and where the superscript in j3(x, y, 2, t)

designates quantities associated with the point charge.
It is now easy to calculate the Fourier transform

JAx, y, kyy 0) = 2i f f JAx, y, z, et gz gy
T J—© J—o

— z_:ﬁ ei(w/v)m&(y - a) (‘B, 0,0, i).
()

This current density gives rise to a 4-potential which
is the particular solution of the equation

(@/0x" + 9%[0y* + p)AUx, ¥, ke » )

' = _.uojz(x’ ok, @) (3)
where p? = k* — k2 and k = wfc. The solution is
given by

” o0 a0
Aﬂ(x,y,k,,w)=4—;’rf f in

x HP{plex — x)* + 0 — y)'1}}
X jUx', ¥’ kg w) dx’ dy’, @
where izH(" is the outgoing Green’s function of the
two-dimensional Helmholtz equation. Here we must

take
p=~— Y K>k,
= i(k? — kY, k2> k2

2 J, Meixner, Ann. Physik 6, 2 (1949).
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Substituting (2) into (4) and using the relation
e vit—steint

51; J._a;"Wﬁh‘f’[l.v(x2 + y)leedx = e ©

we get

A%x, y, k,, @) = (uo/dm)(e]gB)e @/?aalv—al
(8,0,0,i), (6)

where

g = [—p* + (o)1
Let us denote the induced current density by
Ju(x, y, z, t) and the induced potential by 4,(x, y, z, t).
Then their Fourier transforms are connected by an
equation analogous to (4). j.(x,y, k,, w) can be
analyzed into a sum of surface current densities

6 k@)= 3 85 — nd)Ko (0, Ky ), (7)

where K, ,(y,k,, w) is the surface current density
induced on the plate at x = nd. The periodicity of our
system yields the relation

K, (y, z, ndfv) = Ky,(y, z, 0).

In terms of the Fourier transforms, this takes the form

Knu(}’a kz » w) = i(m/v)ndKO“(y’ kz s 60). (8)

Thus all the surface current densities differ from that
on the plate at x = 0 by a phase factor only. Sub-
stituting (7) and (8) into (4) and writing

_ _1__ ® Ky
KOp(y’ kz ’ w) - (2”)* f_wKOu(ky ’ kz s w)e "dky

and using (5) we get

A,,(x, 9, kz , w) = 5_0_ (2,”.)‘}1 z ei(m/u)nd+iw|z-ndl
w

—00 N=-—0o0

X Kon(ku 9 kz ? CO) eik,v d ky ,
w
where

w=0' -k P2k
=ik -, k2t
Carrying out the summation we finally obtain

A”(x, ¥y, k, , w) = — :‘_:r (2,".)‘}e€(mlv)ma

9 J‘ ® sin wlx —(m + 1)d] — ¢"/sin w[x — md]
e cos wd — cos (wfv)d
X KOn(kv’ kv (0) eik,vdk”’

w

where m is an integer such that md < x < (m + 1)d.

€)
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If we set x = md in (9), we get an integral representa-
tion for the boundary value of the induced potential
on the plate at x = md:

A“(md, Y, kzs a)) = Eg- (zﬂ)&ei(m/u)md
47

% f ® sin wd 1
cos wd — cos (w/v)d
x Koulk,, k,, w)e™Vdk,.

—o W

(10)

We can set up an integral equation for the unknown
induced surface current density Ky, (k,, k,, o) if we
can find a relation between the potentials in (6) and
(10). This is furnished by the boundary conditions on
the total electromagnetic field on the plates at
x=md,y<0:

E,+ E) =0,
H,+ H’=0.

These conditions can be translated into conditions on
the potentials* by virtue of the relations

E = —V¢ — 0A/0s,
B=VxA,
V.A+ (1/c)(04]0t) = 0.

(12)

(13)

Substituting (12) into (11) and using (13) we find that
the field boundary conditions in (11) transform into
a set of second-order partial differential equations for
the induced potential, one for each component. In
particular, for the scalar potential, we find

(@*0y* + p*)d(md, y, k,, w)
= (—3/0y® + kD¢'(md, y, k,, ). (14)

The other equations are similar in form. Using (6)
we get the general solution for (14)

$(md, y, k;, »)

= ei(w/v)mdl:be—iw _ o gc_(_l_—iz) efl(ﬂ—a):l_ (15)
47 qp

Here the constant of integration in the complementary
solution has been factorized so that ¢(md, y, k,, w)
satisfies a periodicity condition analogous to (8), and
b is an unknown function of k, and w to be determined
later on. We have discarded a term proportional to
€*?v since it violates the outgoing wave condition.
The boundary values of the other components of the

4 G. A. Grinberg and Yu. V. Pimenov, Zh. Tekh. Fiz. 27, 2326
(1957) [English transl.: Soviet Phys.—Tech. Phys. 2, 2160 (1957)].
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induced potentials are

A,(md, y, k,, ®)
— ei(m/'v)mdl:_b 2 e—iml_ /‘_0 iecﬂ ea(u—a):l
w 47 ’
A (md, y, k,, @) 16)
= ei(w/u)md[b &z et + Ho ecﬂkz ea(v—a)],
w 47 quw

A (md, y, k,, w) is clearly identically zero.
Equating (10) to (15) and (16) we get a set of integral
equations of the form

f K(k,)Ko(k, , k,, )e™" dk, = B,e™" + C,e™,

) y<0, (17
where the kernel is defined by

K(k,) = (sin wdfw)[cos wd — cos (w/v)d]L. (18)

For y > 0the unknowns K, (k, , k,, ) satisfy another
set of equations

Ko, (3, k,, 0) =0
or, equivalently,

f Kok, k,, w)e™dk, =0, y>0. (19)

Equations (17) and (19) constitute a dual integral
equation soluble by the Wiener—~Hopf method.

III. SOLUTION OF THE  EQUATIONS

Equation (17) can easily be converted into a func-
tional equation of the Wiener-~Hopf type by Fourier
transformation

1 iB 1 iC
K(k)f(k,)=h(k,) + — —
(k) f(k,) = h(k,) ke tpti 2k tir
(20)
where f(k,) represents any component of K,,(k, , k,, w)
and

h(k,) = —21; f H(y)e~®vdy @1)

with
HO) = [ KOe)ft)evdk,, y 20 (2)

To simplify the mathematical analysis we have given
p a small positive imaginary part

p—>p+ie, €>0. (23)

Equation (20) contains two unknown functions
f(k,) and A(k,). If it can be shown that these functions
are analytic in the upper and lower complex k,

planes, respectively, the Wiener—Hopf method can be
applied to find the solution. We in fact have such
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analytic properties since we are dealing with half-
planes. Let us define

F(y) =f_:f (k)e™¥ dk,, y <0 (24)

and assume that

|[F()| ~ A,e™, (25

with A4,, 7, > 0. Then it follows from (19) and (25)
that f(k,) is analytic inside the upper half-plane.

y—-—®

—r <Imk, < oo.
Similarly, if we assume that

|H(y)| ~ Age™™, (26)

with A4,, 7, > 0, we find that h(k,) is analytic inside
the lower half-plane

—OO<Imky<1'2.

y—> ©

The kernel can be shown to be analytic inside the
strip
—e<Imk, <€

by virtue of (23). Thus the conclusion is that the terms
in (20) have a common strip of analyticity

—o<Imk, <0, 0<¢7,,7;.

In the following when we speak of the upper and lower
k, planes, we refer to the regions —o < Imk, < o
and — o < Imk, < o, respectively.

The solution of (20) now depends on the possibility
of factorizing an analytic function into two members,
one analytic and nonzero in the upper k, plane and
the other analytic and nonzero in the lower k, plane,
as well as the possibility of separating another
function into two terms, one analytic in the upper k,
plane and the other analytic in the lower k, plane,
First we rewrite (18) as follows:

2_ 1 sinwd 3dw — o/v)
dk:+q* wd sin}d(w — w/v)
$d(w + /v)
sin 3d(w + w/v)

K(k,) =

_2 K (k)K (k,)
d k+4q
where K, (k,) and K_(k,) are analytic and nonzero in

the upper and lower k, planes, respectively. Using
the infinite product representation

27

M o]
Sz (1 _L)ez/m
Z N=—00 ni
n¥o

we get
sin wd/wd = L(k,)L(—k,),

LAM
where
o )
L(k,) = H{[l - (ﬂzﬂ - iM}e‘"‘""/””). (28)
n=] nair nmw

Then L(k,) and L(—k,) are analytic and nonzero in
the upper and lower k, planes, respectively, with the
provision that we take

Im [1 — (pd/nm)2]t < 0.

Similarly
sin }d(w — w/v) sin $d(w + w/v) — G(k)G(—k)
dw — ofv) 3w + ofv) v v
where
o= {[ (4522~ (2215
x e—(d;an)(co/v-—ik,)
<A -5~ G)]- 2]

X e( dlznv)(w/M-ik,).

(29)

Then G(k,) and G(—k,) are analytic and nonzero in
the upper and lower k, planes, respectively, if we take

2 2 %
tm [ (1457 = (3ne) ] <0
2nmo 2nm

2 2-%
off- 2 (]
2nmo 2nm

We can write
K, (k,) = J(k,)L(k,)/G(k,),

(30)
K—(ku) = L(— kv)/J(kv)G( - k’ll)’

where J(k,) is a nonzero entire function as yet un-
determined. The infinite products in (28) and (29) in
general have exponential growth in the appropriate
half-planes. We want to choose J(k,) so that K, (k,)
and K_(k,) have algebraic growth.

Consider the limit |k,| — oo,

L(ky) NH [1 - ikﬁ]ei(kyd/ﬂﬂ)
n=1

ni

eiy(k,d/fr)

—i(k,d/m[—i(k,d[m)]
~[1 /(2.,,.)%] N Ud /D[ _ i(k,d/ 7)].-(1:,01/,,)_11:
Im kv > —o,

where y = 0.5772 - - - is Euler’s constant. Similarly,

G(kv) ~ (llzﬂ)e—i(l—v)(k,d/n)[_i(kyd/2ﬂ_)]i(k,d/r)—l,
Imk, > —o,
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Hence
L(k,)/G(k,) ~ Ak}e'®wiim n,
lky| >, Imk, > —o.
Thus if we define
J(k,) = ¢ ttamin 31
K, (k,) and K_(k,) will have algebraic growth
Ky(k,)) ~ Aikg , 1k — . 32)

These prescribed asymptotic behaviors are essential

in the solution of the Wiener-Hopf equation. The

functions K, (k,) and K (k,) are now determined up

to an arbitrary multiplicative constant which is taken

to be unity, since it does not affect the final solution.
Next we want to separate the function

w(g--— :l (33)

{ B + C
2n K__(k,) k,+p+iec k,+ig
into two terms

wk,) = pik) + p(k)

such that y,(k,) and y_(k,) are analytic in the upper
and lower k, planes, respectively. This is done by
writing y(k,) as an integral along a closed rec-
tangular contour bounding its region of analyticity
—o <Imk, < 0. We have

A e k)
2 i co~ick - k

dk,

— o-+i0

=1 f k) gy,
270 J—ootie k - k

The first integral can be identified with ¢, (k,) and the

second one with y_(k,). Evaluating the first integral

by the method of residues, we get

(k) =

[ B p+iq
K (—p)k, + p + ie
S ] B
K (—ig)k, + iq
This separation is unique up to an arbitrary additive
entire function which is taken to be zero, since it does

not affect the final solution.
We rearrange (20) as follows:

vi(k,) =

2K+(kv)f(kv) _ — (ky — ig)h(k,)
i k+ig v.(k,) TRk + p_(k,).
3%

Each side of (35) defines a function I(k,), but since
the left and right sides are analytic in the upper and
lower k, planes, respectively, I(k,) is analytic in the
whole k, plane and is therefore an entire function.
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Clearly our equation is solved if we can determine
I(k,). From physical considerations, the induced
surface current density Ky, (y, k,, @) is integrable with
respect to y. This implies that f(k,) is asymptotic to
zero in the upper k, plane. Thus the left side of (35)
is asymptotic to zero in the upper k&, plane. Similarly,
it can be shown that the right side is also asymptotic
to zero in the lower k, plane. So I(k,) is asymptotic to
zero in all directions. Since, by the maximum modulus
theorem, the modulus of an entire function assumes
its maximum at the point at infinity, I(k,) must be
identically zero. We therefore obtain the solution of
our equation:

—id [B(p+iq) k, + iq
4nK (k)L K(~p) k,+p+i

2iCq ]
——1. (36)
K_(—ig)

Here B still contains an unknown constant b in (15)
and (16). We adjust b so that the solution satisfies the
boundary condition

J(k,) =

+

Ko (3, k,, 0) =0, y=0.
We list the final solution as follows:
—iecBd
Kok, k,, 0) = tecf
Ov( ] ) (271-)*
g q [ p—ig }
K (—igK (k) oLk, + p + ic
— —aa
KOz(ku » kz , W) = leCﬁd ¢ !C_,

@emt K (—igK, (k) o

X [g__kv—’-iq. +i],
pk,+p+ie
iecfd e 1

kys oy @) = = c
coo(k, ) (2‘”)4} K (—igK (k) c

ﬂﬁ

pk,+p+ie
This solution can be shown to satisfy the assumptions
made in (25) and (26). Moreover, the asymptotic
behaviors

Kolky, k,, @) ~ Bii;Y,

Kok, k,, w) ~ Byk3?,

cag(k,, ky, @)~ Baks s kv ~» 00,
imply that

Koy, k,,w)~ Clyi,

Koy kyy @) ~ Coy3,

coo(y, ky, w) ~ Coy ¥, y— —0.

(37
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These are precisely the edge conditions in electro-
magnetic diffraction.® We notice that K,, vanishes at
the edge, while K, and co, diverge there.

IV. INDUCED FIELDS

We can calculate theinduced potential 4,(x, y, k., »)
by substituting (37) into (9). The integration can
easily be carried out, since the only singularities of
the integrand on the k, plane are simple poles. For
y £0, we complete the contour in the lower k,
plane. The integral is reduced to a sum of residues at
the poles at (i) k, = —iq, (ii) k, = —p — ie, and
(i) k, = —[p* — (nm/d)?]t —ie, n=1, 2, 3,

The contribution from each pole may be interpreted
as a characteristic solution of the wave equation. For
y > 0 we complete the contour in the upper k, plane
and collect contributions from poles at (i) k, = ig and
@) k= {p* — [@nmfd) — (@)} +ie, n= %1,
+2, +3,::+. From A4,(x,y,k,,w) the induced
fields E(x, y, k,, @) and B(x, y, k,, w) are obtained
by standard operations.

Let us first consider y < 0. The results are sum-
marized as follows:

(i) Contribution from pole at k, = —ig:

ec
E(x, 3, ki, 0) = £2 2 efelmiates

m B

B(x, ¥, kz’ w) —_ Hao e et(m/'v)m+a(v—a) (0, —i Eg, 1)
4 q

These fields exactly cancel the fields of the point
charge as calculated from (6).
(ii) Contribution from pole at k, = —p —

E(x, , k,, ®) = Py(k,, w)e" /™ ™(g/p, 0, 0),
B(x, y, k,, w)

= (1/0)Py(k,, w)e"*'™e=7(0, qk,[pk, q/k),
where m is an integer such that md < x < (m + 1)d,
and

(39)

Pyk,, w) = o 2e_c'B - i(m/v)d] K _(— .p) e‘“"' .
4n d K _(—ig)p + iq

These fields satisfy the relations

E-B=0, E=_cB. (40)

They represent a TEM wave propagating downward
between the plates at x = md and (m + 1)d with wave
vector

k = (09 _Ps ka)

LAM

(iii) Contribution from pole at

ky,=—[p*— (nmjdpP]} —ie, n=1,2,3,---.
E(x, y, k,, ©) = P,(k,, w)e" @/ ™

x{l:gk,,,,+iq l_ﬂz:l cos7x,

pky+p p
[,-k_w_é(g_kw.+iq_1—ﬁz) _ ;494 p—iq:l
nm \p kun+p ﬁs nﬂkun"'P
. hm 1kd  n=m }
X sin — x, — — X},
d ﬂzmr
B(x ¥, kz, (O) 2 P (k cu)et(m/'v)rmi tkyn¥ (41)
y ‘l:—ik”"d&(gk””-'_ lq_l_i) +iq—d-k—‘p— iq]
nm k\pk,+p nrkk,+p
X s1n!'——x,k (q kun + ig + i )cos"—nx,
d k\pk,+p d
_QP;"‘I_COSM,C},
kk,+p d
where md < x < (m + 1)d,
kyn = =[p* — (nm[d}E — i,

and
Py, ) = 0 26B _gymmpy _ (_pyrtormay
47 d

K (ko) (nmjd &
K _(—ig) (w[v)* — (nm/d)? k,,,

These fields also satisfy the relations (40). They
represent higher excited modes propagating in the
waveguide formed by the plates at x =md and
(m + 1)d. For sufficiently large n, k,, is imaginary
and the fields are exponentially damped in the
negative y direction.

For y > 0 the fields take on the following forms:

(i) Contribution from pole at k, = ig:

Qulls, a)eteloiees

E(x, y, k,, ) =

. k[q 24 _1—;92
x( lqﬁl:pp+iq p ]

4 29  p—iq 1—/32
PP+iq+P+iq 2 52)

B(x, y, k., ) = 1 0k, , w)et@/ve—ay
c

k _-
x(__z[ﬂ 2 p—ig,
klpp+iqg p+iq

1]
- i’&[g_zL+1J’_
qBlpp + iq

1p )
Bp+ig)
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where

Qolk, , ) = (uo/4mecBK_(ig)/K_(—ig)le—.

Since k, = w/v, we deduce that the group velocity is

of magnitude v in the positive x direction. Thus these

fields are simply dragged along by the moving point

charge. They do not represent any outflow of energy.
(ii) Contribution from pole at

k, = {p* — [@nn[d) — (0[)I}} + i,
n= il’ :!:2’ :’:3’-..:
E(x’ Y, kz ’ w) = Qn(kz ’ w)ei[(m/”)_(z"’/d)]ﬂik{, v

[ofe-mane s

v d/\pki,+p lis
’ . _2
pky+p B
+tq—,——,——}
kyw+p B

B(x, ¥s kz, w) = % Qn(kz , w)ei[(m/v)—(zmr/d)]w+ik,n'u (42)
x[ikénlfz(ﬂw + i) — g2 2=
k\p ky, + p k kyn + p
_i(e - ?_K'E)E(ﬂ_’f_ilil + ,-),
v d /k\pk,, p
,-(9 _ M_ﬂ)z P —_12_4}
v dJkk,+pl

where k,, = {p* — [2nn[d) — (w[v)}} + ie,

ko) = o 2ecf
Qulkas @) = o — [@nmld) — @/

. Res Klin) o
K (—ig)
and Res K_(k;,) is the residue of K_(k,) at the pole

k, = k,, . These fields satisfy the relations (40). They
represent a wave with propagation vector

k= [w/U - (2n7r/d), kilm’ kz)

For sufficiently large n, they are exponentially damped
in the positive y direction.

V. POYNTING’S VECTOR

~ The property of the radiation is studied by cal-
culating the Poynting vector

S(x, y, z, w) = E(x, y, z, 0) x H¥(x, y, z, w). (43)

To this end we must first carry out the k, inversion on
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the fields calculated in the previous section. This
amounts to evaluating integrals of the form

1 ® . .
1= [ se exp 1218 — koby + stz i,

(44)

This integral cannot be evaluated exactly, since f(k,)
has a very complex structure. But if we write

—ir <4< i,

where the upper and lower signs correspond to the
half-spaces y > 0 and y < 0, respectively, then for
p— oo we can use the method of steepest descent to
get an expression for the far fields:

y=+pcosd, z=psind,

I ~ f(4sin ¢)A cos ¢(Ap)‘*ei1p—idw>_

This is in the form of a cylindrical wave.

We calculate the Poynting vector from the far
fields and summarize the results below. It is clear that
only undamped fields need be considered. For y < 0
we get

(i) Contribution from pole at k, = —p — e:

(45)

o 2ezv2( »
S(x, y,z,w0) =="—"—1 ~cos—d
(¥ ) 47 med® )

v
X (1 — p*cos® ‘ﬁ)l% ze—]:?ep- (46)

In this expression we must put k, = k sin ¢.
(ii) Contribution from pole at

k,= —[p® — (nmjd?P} —ie, n=1,2,3,--:

In this case it is more appropriate to give the Poynting
vector averaged over one period d:

(m+1)d

S(x, y, z, w) = ‘—2 f S(x, y, z, w) dx.

We get "
S(x, y, z, w) = Z—;%ZI:I ~ (=" cos %’ d:l
(nw/d)* K_(kyn)
(@/v)* — (nm/d)*} | K_(—iq)
% p(na/d)’[(1 — B%/%] + 2(k,/B) (K, + p) €72 .

p(k,, + p)° kp *
CY))

2

In this expression we must put

k, = [k* — (nm|d)}E sin ¢,
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For y > 0 we get contributions only from poles at
k, = {p* — [@nm]d) — (0[0)}} + ie,
n==+l, £2, £3,---,
b €0 K — [(2nm/d) — (w/n)]*
4r mc {(wfv)* — [(2nm/d) — (w/v)]*}?
Res K_(k,,) °

S(x, y, z, w) =

K_(—iq)

o 21@nid) — (@[ — B8] + 2(k,16)(y + )
p(kys + p)?

g e cos® ¢ ; k, (48)
ke {k* — [2nm/d) — (o/v)]'}

where
- 2~ %
- (o[- G 0

In (48) we miust put
k, = {k* — [(2nn|d) — (w[v)}}} sin ¢.

From Eq. (49) we see that at fixed frequency o, the
x component of the wave vector in the upper half-
space y > 0 has only a finite number of discrete
values:

k, = (w0}v) — Qnu|d), n= +1, £2, £3,---.
(50)

We recognize this to be the von Laue condition for

wave diffraction by a periodic structure if we recall .

that w/v is the x component of the wave vector of the
incident wave (6). If we let w vary and observe the
radiation at a fixed angle 6 with respect to the x axis,
then Eq. (50) gives
o = (2nmv/d)|(1 — B cos D),
n=41, 42, £3,---. (51)

Equation (51) states that the frequency spectrum at
fixed 0 consists of discrete lines corresponding to
integral multiples of 2nv/d which measures the number

LAM

of plates traversed by the point charge per unit time,
shifted by the Doppler factor (1 — g cos 6)7%.

The presence of infinite products in (46), (47), and
(48) obscures the properties of the Poynting vector, in
particular, its angular dependence. However, recently
Kazantsev and Surdutovich® solved the problem of
the excitation of a conducting half-plane by a uni-
formly moving point charge. These authors found a
Poynting vector of the form

Bo €

47 87Pr®

cos?0(1 + sin ¢) + (1 — B%sin? 6)(1 — sin ¢)
sin (1 — 8%sin® 6)(1 — B%sin® 6 cos® ¢)

X exp {— 2a |o] [1 — B%sin® 0]’}}, (52)
v

S(x, y, z, w) =

where x = rsinfcos¢, y =rsinfsing, z = rcos 0
and the half-plane is taken to be at x =0, y < 0. In
general the radiation is concentrated along the y axis
at high frequencies, along the z axis at low fre-
quencies, and along the x axis at high velocities
(8=~ 1). In the approximation of zero interaction
among the plates, the radiation pattern of N plates
spaced evenly with a separation d near the plane x = 0
can be synthesized from that of a single plate. We get
a Poynting vector equal to (52) multiplied by an
“array factor”
sin® (ANd)(k, — w/v)
sin® (3d)(k, — ofo) ’

which is sharply peaked in directions satisfying (50).
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A classical inequality giving lower bounds for fluctuations about ordered states is derived. The
inequality, analogous to a quantum result due to Bogoliubov, is established by a purely classical argument
which makes explicit the nature of the surface boundary conditions required, a point which is rather
obscure in the quantum derivations. As in the quantum case the inequality is useful in excluding certain
kinds of phase transitions in one- and two-dimensional systems. This is illustrated for several kinds of

classical spin systems.

N exact inequality due to Bogoliubov?! has recently
been used to prove that several kinds of phase
transitions cannot occur in one- and two-dimensional
quantum systems.>® The derivation of the inequality
relies heavily on the formal apparatus of quantum
mechanics, but if the quantum phase transitions have
classical analogs, similar conclusions about the
classical systems follow from taking the /A — O limit
of the final quantum resuit.

One would nevertheless like a purely classical proof
of the Bogoliubov inequality for several reasons. It is,
if nothing else, distasteful to be forced to appeal to the
classical limit of a quantum mechanical result, in an
otherwise purely classical argument. Furthermore, the
detailed evaluation of terms in the inequality in
particular cases is frequently less laborious classically,
since terms that ultimately vanish in the # — 0 limit
of the quantum result are dropped from the beginning,
and equipartition of energy can frequently be exploited.
Finally, the effect of surface conditions on the
Bogoliubov inequality is somewhat hard to ascertain
in the quantum theory, while in the classical theory
the surface can lead directly to explicit correction
terms in the basic inequality.

For these reasons a direct classical proof of the
Bogoliubov inequality is given below. However, one
should realize that the inequality is proved only for
Hamiltonian systems, and these are always classical
analogs of quantum systems. Therefore, aside from
esthetic and calculational matters, the primary point
of this note is to establish the validity of the naive
A — 0 limit and to emphasize (as has not been done
in the quantum derivations) the importance spatial
boundary conditions can have on the form of the
inequality.

* Alfred P. Sloan Foundation Fellow.

1 N. N. Bogoliubov, Phys. Abhandl. S.U. 6, 113 (1962); see also
H. Wagner, Z. Physik 195, 273 (1966).

2 P. C. Hohenberg, Phys. Rev. (to be published).

3N. D. Mermin and H. Wagner, Phys. Rev. Letters 17, 1133
(1966).

Consider, then, a classical system described by
canonical variables ¢;---¢,, p; - - p,, and Hamil-
tonian H(g, - - * p,). We define the canonical ensemble
average (4) of any function A(q, - - - p,) in the usual

way:
4y = f dTePH 4 / f dTePH
= f dTe PPy,

where dI' is the phase space volume element, dI' =
dgy---dp,,and § = 1/kgT.

For any functions 4 and B for which the ensemble
averages (|4[?), (|B|?), and (4*B) converge, we have

(|14 — (4B*)B[{|B]*)|*) 2 0,
and hence the Schwartz inequality,

(1A% > KA*B){*/{|BI*) M

(with equality if and only if 4 is a constant times B).

Classical versions of the Bogoliubov inequality
emerge when the function B is of the form [C, H],
where the bracket is a Poisson bracket:

X (0A OB 0BO0A
[4, B] = ( ————— ) )
igl 0q,0p; 94, 0p;
It is then easily verified that
(4*[C, H]) = kgI([C, A*]) + A, — Ay, (3)

where A, and A, are given by

A = kTS [ar —a—(A* oc e-ﬁ‘H-F>), @)
=1

9g;\ Op,
Ay=kyT 3 [a0 2 (A"‘ ac e-ﬂ<H—F’). )
=1 op; dq;

For each i the integration over ¢, in (4) and p, in (5)
can be done explicitly, showing that A, and A, are
surface corrections to the basic result:

(4*[C, H]) = kgT([C, 4*)). ©
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In a variety of cases the surface corrections to (6)
vanish identically, either because the relevant functions
are periodic, or because the statistical weight e#H#
vanishes as any p, or ¢, goes to infinity. We assume
this to be the ordinary state of affairs, in which case
(6) and (1) imply, with B = [C, H] that:
kpT (IC, A*DI* .
(C, [C*, HID

This is precisely the naive classical limit of the
quantum Bogoliubov inequality in the form given in
Ref. 3, with commutators replaced by Poisson
brackets times .4

Equation (7) is the main result of this note. The
question of when it has to be modified by nonvanishing
surface terms must be taken up in each particular
application of (7). Here we only illustrate its use in a
few simple cases in which the surface terms vanish.
[It is at first surprising that in the classical theory
‘the validity of (7) depends on the vanishing of various
surface terms, since no such problem appears to arise
in the quantum theory; it is, however, swept under
the rug® in the implicit assumption that the Hamil-
tonian is Hermitian, which allows one to integrate by
parts in matrix elements like (E|HA|E') to get
E(E} A|E') and no surface terms.]

(14 2

Example 1:
H= le?/zmi + U(gy """ qn)-

This form of H is relevant in discussing the possi-
bility of crystalline ordering in one and two dimen-
sions. The details of this problem will be presented
elsewhere,® and here only the following elementary
points are made:

Terms of the A, type [Eq. (5)] vanish for reasonable
A4 and C because of the quadratic dependence of H
on momentum. Terms of the A, type [Eq. (4)] are
somewhat trickier. In using the Bogoliubov inequality
one always works in a finite volume, reserving the
thermodynamic limit for the end of the argument.
If the finite volume is maintained by an explicit
potential well term in U, then A; terms will also
vanish at infinity in configuration space for well-
behaved 4 and C. However, in this case the contri-
bution of the well term in U must be kept in the

4 Note that one has equality-in (7) (provided surface terms can be
ignored) if and only if 4 is a constant times [C, H]. This is not the
case in the quantum version of (7) since its derivation requires both
the Schwartz inequality and the replacement of the quantum
fluctuation dissipation theorem by its classical form (which
maintains the inequality).

5 The author is indebted to J. Langer for directing his attention
to the correct rug.

¢ N. D. Mermin (to be published).
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denominator of (7). Alternatively, one can avoid such
terms in the denominator of (7) by working in a
configuration space of volume ¥, but then the A,
surface terms do not vanish, and care must be taken
to demonstrate that the arguments excluding ordering
in one or two dimensions remain valid in their pres-
ence. Finally, one can avoid the problem by imposing
the analog of the quantum periodic boundary con-
ditions—i.e., artificially redefining U to have the
macroscopic periodicity of the box of volume ¥, and
only considering functions 4 and C which have this
periodicity in configuration space.

Example 2: Models involving classical three-dimen-
sional spins, on lattices of arbitrary dimensionality,

Consider the classical statistical mechanical system
defined by the following free energy:

ePF = f PUS®) T 4@,
H==3 J® -~ RIS®)-S®) — h 3 5.8,

where the index R runs over the sites of a Bravais
lattice of N sites with the usual periodic boundary
conditions, and the a priori weight function P depends
only on the magnitude S(R) of each of the spins. Two
special cases are of particular interest”:

() If

©)

PE{S®D — I (S — S®)),

then each spin has the same fixed magnitude S, and

the integrations are only over the directions of each

spin. This is just the classical Heisenberg model.
@I

P(S(R)}) a(Ns2 -3 S”(R)),

then (8) gives the free energy for a spherical model
of three-dimensional spins.

Provided that the a priori probability of any single
spin being infinite in magnitude vanishes and provided
that J is of finite range, the system (8) can be shown to
have no spontaneous magnetization in one and two di-
mensions. The trick in constructing the classical proof
is to define the Poisson bracket. Suppose we first fix
the magnitude of each spin. The system can then be
described by the 2N canonical variables 6(R) and
S,(R), where 6(R) is the angle between the projection
of S(R) in the x—y plane and the x axis, and S,(R) is

7 The introduction of P slightly simplifies the proof at the
expense of introducing a singular a priori distribution function in
the two cases of chief interest. However, direct proofs that do not
use P can easily be constructed in these cases.



ABSENCE OF ORDERING IN CERTAIN CLASSICAL SYSTEMS

the projection of S(R) on the z axis. The Poisson
bracket is therefore

({24 0B
5= 3 (3 m

dA OB
- m®am) ©

where the derivatives are to be taken at fixed spin
magnitudes.

Rather than rewriting H in terms of the canonical
variables and the dynamically inert spin magnitudes,
it is simpler to rewrite the Poisson brackets in terms
of the variables S, S,, and S,. Thus if

= (S* — SB¥cos 6,
S, = (8* — SH}sin 6,

then
2408 9B oA _ (04 3S,  243S,
0960S, 000S,. (38 06  0S, 80)

JB @S 6B BS 0B
b 09g A<> B
% (asa,ass 3s, as, +as) (4 B)
04 0B
=8.= ——
S &S
and therefore®
_0B_
A, B 10
[4, B] = ZS( ) aS(R) aS(R) (10

Equation (6) without any surface corrections can
now be proved as follows:

(A%C, HY)
=3 f TT dSRP((SMR))e" HE-P A*S(R')
5,

ac_ . oH
"3S®R) * ISER)
-1 2 f TT dS(R)A*S(R) - —2=— aS(R')
—B(H~F)
8S(R’ 1y

[The last line of (11) is justified by observing that
[C, Pe?E] = [C, e 2P + [C, P]e ?H
and
[C.Pl=0,

since P depends only on the spin magnitudes.] We

8 Compare N. D. Mermin, Phys. Rev. 134, A112(1964), Appendix
A,
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may rewrite (11) as

arC,H) = — 1 z > [ [ aswar; 55%3 sy

_oC 0
ES(R’) aS(R’
= 2R’
353 | Taswst)
__ac
oS(R")

(Pe—ﬂ(H-F))

*

35( )

9 (peBEH-F

X35 (R’)( ) (12)
where the integration by parts is justified by the as-
sumed rapid vanishing of P for large spin magnitudes.

Now the integrand in (12) is invariant under cyclic
permutation of A*, C, and Pe #H~F), as must there-
fore be the last line of (11). But the permutation
A* — C— Pe PUH-F) . 4* reduces the last line of
(11) to (—1/p)[4*, C], which proves (6).

With the Bogoliubov inequality (7) established for
this classical spin system, the proof that there is no
ferromagnetism in one and two dimensions is essenti-
ally the same as that given in Ref. 3:

We define

S(k) = Z e*RSR), Jk) = ¢ *RJ(R)
R
and let C = S, (k), 4 = S_(—k). Equation (7) now
leads to the inequality®

(/NS &)
2 l kBTsz ,
N [Ni S U) - I = ) ]
X (S, + HSL X)) + 3hs,
. .
=N= 2 (S.R)).
But since

1 o 1 ,
% N 18,5 = N %: ISR < §%,

1
2 = WS + 3S,®))) < S,
x N
where S?%is the mean square magnitude of an individual
spin, we have

s 1 1
s > 2k Ts?
=T 2 eSS R IR+ 115

? Sums over k in both spin examples are restricted to the first
Brillouin zone.
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In the limit of an infinite system the sum becomes
an integral, which diverges in one and two dimen-
sions as  goes to zero, thereby proving that s, must
vanish with vanishing A.

Example 3: Lattice of plane rotors.?®

If we take not three-dimensional spins, as in
Example 2, but two-dimensional ones, the argument
simplifies considerably. Let

2
P = f TT doR)e?2,
0 R

13)
H =~ 3 J(R — R)cos (6(R) — 6(R))

—h 3 cos O(R).
R

The canonical variables are now 6(R) and P(R), the
angular momentum perpendicular to the plane of
rotation. We take

A =3 sin 6(R)e R,
R

C= E P(R)e™™*R,
R
and hence

— _ v ~&r_OH
[CH]=—2e BE®)

In this model ensemble averages involve integrations
only over each 6(R) between 0 and 27. However, from
the form of [C, H] it is directly evident that (6) is still
valid, since only an integration by parts with respect
to O(R) is required to prove it, and all functions in the
integrand are periodic.

Therefore (7) again holds without any surface
corrections, and the proof that this model is not
ferromagnetic in one or two dimensions proceeds as

1% This model has been studied by M. Kac, as described in a
recent lecture at Cornell. The analysis of Kac’s model given here
was constructed at the suggestion and with the vigorous assistance
of M. E, Fisher.

N. D. MERMIN

follows:

{{C, [C*, HID

— ik-(R—R’) _ﬂﬂ.—

=2 <ae(R)ao(R'>

=23 JR — R)(1 — e*®R)cos (H(R) — 6(R"))
RR'

+h % (cos B(R))

< N3 R* ) + i ),

where m is the magnetization per particle,

(14)

m= L > {(cos 6(R)).
N7
Furthermore ([4*, C]) is just Nm. Therefore from
(7) we have
3 (sin B(R) sin H(R'))e™ ®R")
&)
' > N kBTm2
TG R IR + (7] |m|

But

’1_2 2 (Z {(sin O(R) sin Q(Rf»eﬂi-(n—n';)
N*% \gr

2 (sin® B(R)) < 1,
R

A

and hence
1> kBTm2}$§ [ R* IR + |kl Im[]~. (15)

In the thermodynamic limit this becomes (n = N/¥V)

(2m)*

(where d is the number of dimensions) which again
requires that m vanish as # goes to zero in one and
two dimensions.

‘> igln‘__mgf_d_k_ (K3 R* IR + [h] Im]]™,
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In the previous paper of this series, it was shown that three types of gravitational null fields may be
characterized on the analogy of the electromagnetic field. The first two types were discussed in the previous
paper. This paper discusses the remaining third type (C) of gravitational null field. The necessary and
sufficient condition that the gravitational field be of type C is obtained. The formalism is also extended to
include nonempty gravitational fields. It is shown that the nonempty space-time may also admit three
types of gravitational null fields under certain circumstances, A typical case is discussed as an example.

1. INTRODUCTION

IN the first paper of this series,! we developed a
criteria for the characterization of vacuum gravi-
tational null fields and showed how this criteria leads
to three distinct types of null fields designated as
fields of type A, B, and C. In I, we considered types
A and B in detail under the assumption that R, = 0.
In this paper, we consider vacuum null fields of type
C. We also extend our theory to include the nonempty
gravitational fields as well.

Since in I we considered the theory in detail, we
give only a brief outline here. In a vacuum normal
hyperbolic Riemann space-time (i.e., R, =0), we
can construct two types of dual tensors from the
curvature tensor in the following manner?®:

*Rier = beimnRE" (L1)
X .&Riﬂcl = ifumuszmRm"W (1.2)
with the following property®:
.*'Ruu = Rt);zk 1.3)
and .
* .x.Rijkl + Ry = 0, (1.9

where *R and R* are the left and the right duals
(indices suppressed), respectively. Now, the following
tensors are formed from the curvature tensor and its
duals:

Gl'j = R“.'nukul, (1-2.7)
H,, = ¥R, uu’, (1.2.8)
Ky = % %Ry utu, (1.2.9)

1R, M. Misra and R. A. Singh, J. Math. Phys. 7, 1836 (1966),
referred to here as L.

1 The signature of the space-time has been taken +-++—. The
range of small Latin indices is from 1 to 4 and those of Greek
indices is from 1 to 3. Latin indices are used as tensor indices and
Greek indices are used as labels. Summation convention is used
throughout.

3 In general, the left dual of Ryycq equals the right dual when and
only when S, = R. — }gaR = 0. This condition is obviously
satisfied for vacuum gravitational field, i.e., Rgy = 0.

where u* is a timelike unit velocity vector representing
the world line of the observer and satisfies

utu, = —1.

(1.5)

The tensors G, H, and K satisfy the following
conditions?:

Gt=Ht=KE:=0, (1.2.10)

Gupn = Hyup= K = 0. (I.2.11)

It should be remarked here that Eq. (I.2.10) is valid
only in case of vacuum gravitational field, whereas Eq.
(1.2.11) states that these tensors are symmetric. This
can be easily seen from the symmetry properties of
the curvature tensor. Now assuming the equalities of
the eigenvalues of G,; and H,,, and the definite relative
orientation of their eigenvectors [cf., assumptions
(A) and (B) in I] leads to three types of gravitational
null fields. Gravitational null fields of types A and B
have already been considered in I, we study here the
null fields of type C.

2. GRAVITATIONAL NULL FIELDS
OF TYPE C

In case of gravitational null fields of type C all the
eigenvalues of G,; are zero and so also that of H,.
The following equations are then satisfied:

G,,G" = H,H", .1

G.',G;Gk‘ = H‘,H:Hk‘ = 0. (2.2)

These equations are direct consequences of assump-
tions (A) and (B) of I.

For further discussion it is convenient to use the
nonholonomic coordinate frame defined with the help
of the unit eigenvectors ﬁ" of G, and «*. The vectors

¢ The symbol () has been used for symmetrization and the
symbol [ ] for skew-symmetrization.

1065



1066

satisfy the following conditions

eefi = 88, (2.3a3)
eu' =0, (2.3b)
2.4

8is = €€; — Ul;.
aa
The nonholonomic components of an arbitrary tensor
T,; are then defined as

T; = ,-,e"e’. (2.5)
«p

We now state and prove the following theorem.

Theorem (2.1): If we define a tensor @, in the
following manner

Qabcd = Rabqum"Rrscd 4 (2-6)

then the necessary and sufficient condition that a

vacuum space-time admits a null gravitational field
of type C is that

chcd = 0. (2'7)

Proof: In order to establish this theorem, we first
express the right-hand side of (3.6) in terms of Gy
and H; through Eq. (1.2.13). Then from equation
(2.7), after contracting by u%' and simplifying, we
obtain

G{G"Gys — HIH3} — HY{G, Hj + HYG,s} = 0.

2.9
On further contraction of this equation by f"f'i and
making use of the fact that

Gy = Gy = Gy =0, (2-9)

we get

GI2GISG23 - GmHng - GmHng - H§623H ? = 0.
(2.10)

Similarly, contracting Eq. (2.8) by different pairs of
e”%“, we obtain a set of three more equations. Also
Egs. (2.1) and (2.2) are equivalent to

d Gl + G + G = Hi, + Hi + Hy  (2.11)
an

GlgG23G31 = H12H23H31 = 0. (2.12)

But these equations are not linearly independent.
However, when these are solved simultaneously, we
obtain a set of solutions, a typical one of which is

Gl = Hiy =M (say), (2.13)

the remaining components of G and H being zero.

R. M. MISRA AND R. A, SINGH

This is equivalent to choosing a particular coordinate
system in which

0 M 0

Gy=|M 0o o0 |, (2.14)
6 0 0]
0 0 —M\

Hy,={ 0 0 o (2.15)
-M 0 O

The two three-tensors satisfy assumptions (A) and (B)
and hence the statement of the theorem.

We now show that the gravitational field satisfying
(2.7) admits a null vector in agreement with the
properties of the gravitational null fields.5

Theorem (2.2): If the gravitational field is a null
field of type C, then it defines a null vector given by

k,=u,—e,. (2.16)
1
The vector k, satisfies the equation
Rabc[dkclkc = 0. (2.17)

Proof: According to the Debever’s®-? theorem, the
multiplicity of the null directions which a nonvan-
ishing Riemann tensor may admit should be four, so
we define the null directions as

k, = Ae, + Be, + Ce, + Du,,
1 2 3

where A4, B, C, and D are scalars whose values are to
be determined. On substitution of this value of k, in
(2.17) and making use of (1.2.13), (2.1), (2.2), (2.14),
and (2.15), we obtain a set of equations in the scalars
A, B, etc. On solving these equations we easily find
that

B=C=0, 4= -D.

Thus we obtain
ka = D(ua - 1a)°

However, the scalar D may be chosen to be unity
without any loss of generality; hence the theorem.

This completes our study of null gravitational
fields for an empty space-time. In the next section we
consider the existence of null fields in a general
space-time for which the energy-momentum tensor
does not vanish.

8 R. K. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).
¢ R. Debever, Bull Soc. Math. Belg. 10, 112 (1959).
? R. Penrose, Ann. Phys. (N.Y.) 10, 171 (1960).
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3. NULL FIELDS IN NONEMPTY
SPACE-TIME

We characterize the nonempty space-time with an
energy-momentum tensor T, so that the field equa-
tion is

Rab - %gabR = _Tab’ (31)

where gravitational constant has been taken to be
unity. Now, since in this case the field equation (3.1)
is constructed with the help of the Ricci tensor, the
metric tensor, and the energy-momentum tensor, it
is no longer possible to base the investigations only
on the properties of the curvature tensor. Therefore,
we define an object used first by Petrov®? called
space-time-matter tensor in the following manner.

Parca = Ropeq + ga[ch]b + gb[cTa]a + 62,1480 » (3.2)

where ¢ is a coordinate dependent function. The
tensor P, has the symmetry properties of the
Riemann tensor, i.c.,

(3.32)
(3.3b)

P(ab)cd = Lav(ed) = Pa[bcd] = 0’
Pab = W8y -

The necessity of introducing a coordinate dependent
function ¢ is connected with the question of the
uniqueness of the mass—energy tensor. It is because
Eq. (3.1), satisfied by T° which has the following
properties:

(a) T is symmetric;

(b) V,T% = 0, where V derivative is used for covar-
iant differentiation;

(c) T® depends only on field potentials and g,;;
is also satisfied by T7?*, where

T'ab — Tab + agab

“a” being a scalar.1
Now, we define tensors G,,, H,,, and K,, with the
help of the equations

Gac = Pabcdubud’ (34)
ﬁac = .):(’Pabcdubuds (35)
Kac = X ‘):(.Pabcdubud’ (36)

where *operation has the usual meaning. The tensors
G, A, and K are the analogs of G, H, and K respectively

8 A. Z. Petrov, Scientific Notices Kazan State University 114, 55
(1954).

% A. Z. Petrov, in Recent Developments in General Relativity
(Pergamon Press, Inc., New York, 1962), p. 371.

10V, Fock, in Conference internationale sur les theories rela-
tivistes de la gravitation (Pergamon Press, Inc., New York, 1954).
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for a nonempty space-time. They satisfy
Grany = Hpary = Kiary = 0, €N)
G=—-K'=w, H=0, (3.8)
where
w=3%¢+T, T=T:. (3.9

It should be noted that Eq. (3.7) states that G, H,
and K are symmetric, a consequence of the symmetry
properties of P,.;, and that (3.8) holds in view of
(3.1). In general, the rank of G, A, and K is three and
they lie in a space orthogonal to #?*. It may easily
be seen that L

Pupe + ™ Papag = 0. (.10

In view of this equation we have the important
relation
G+ Ky = 0. (3.11)

Now the tensor P, in view of (3.3b) has ten alge-
braically different components. These are all contained
in G, A, and K. Thus the components of Riemann
tensor have been partitioned into three symmetric
tensors (3.4), (3.5), and (3.6). The Riemann tensor
can be recovered from G, H, and K through the
following equations

P+i *p )a.bcd = (g + i€)appo(g + 1€)cars
X uPu’(G + iH)e
‘—(g + ie)abw(g + ie)cdrs
X wPu'(K — ilf)®=, (3.12)

We thus note that our formalism for the nonempty
space-time is entirely analogous to that of vacuum
fields. All the relations for nonempty Riemannian
manifold are obtained from those of empty-space-
time merely substituting P in place of R and G, H,
and K for G, H, and K, respectively. But we further
note one important difference, which is that, whereas
G, H, and K for vacuum fields are all traceless, this
property no longer holds true for G,, and K,,. We
observe from Eq. (3.8) that the trace of G,, is equal
to a scalar w given by Eq. (3.9). In general this scalar
is not zero. However, the choice of w, o, and T is
connected with physical consideration. If the motion
and distribution of the matter are given so that T,
is known and if P, is known for some specified
choice of o, then the curvature tensor is uniquely
determined. Again, because of the freedom in choice
of ¢ we can always make o to vanish. However, for a
general discussion we do not specify the choice of w.

Now, for the characterization of gravitational
null fields for a nonempty Riemannian manifold, we
have to see whether assumptions (A) and (B) may
also be satisfied in this case. If such a space-time
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admits a null gravitational field then assumption (A)
states that the eigenvalues of G, and H,, should be
equal, and assumption (B) states that their eigen-
vectors should have a required relative orientation.
But we conclude from Eq. (3.8) that equality of eigen-
values of G,, and H,, cannot hold, and therefore
assumption (A) cannot be satisfied. We hence have
the following theorem.

Theorem (3.1): A nonempty Riemannian manifold
for which Egs. (3.1), (3.2), and (3.7)(3.9) are satisfied
cannot admit a gravitational null field in general.

Proof: In view of the above discussion the theorem
is evident.

Thus we conclude that in this formalism a nonempty
space-time with an arbitrary energy-momentum
tensor does not admit null gravitational fields in
general. However, we remarked earlier that, in
particular, a proper choice of the coordinate system
can be made and a given distribution and motion of
matter may be considered for which the scalar w
vanishes. Equivalently, if trace of G,, and K, is zero,
then assumption (A) may be satisfied. In order to be
more specific about the above statement, we consider
an energy-momentum tensor whose trace vanishes
and choose a coordinate system such that ¢ is zero.
In particular, weinvestigate the following field equation

Rp = —Fa> (3.13)

where F, is the stress—energy tensor of the electro-
magnetic field defined in the following manner

Fo = feaf ™ — 100L0ef™, (3.14)
where f; is the electromagnetic field tensor. In this
case we obtain

w=F+3=0, (3.15)
Py =0, (3.16)
G:=HA!= R*=0, (3.17)

where F = 5¢ = 0. Thus in view of (3.8), (3.9), (3.15),
and (3.16) assumptions (A) and (B) may be satisfied
and we may characterize gravitational null fields in
nonempty space-time exactly in the same manner as
we did for vacuum fields. Accordingly, we characterize
the gravitational field to be a null field of type A, B,
and C, respectively, if

R. M. MISRA AND R. A. SINGH

(a) all the eigenvalues of G,; and H,, are nonvanishing;
(b) one of the eigenvalues of G,; and H; is vanishing;
(c) all the eigenvalues of G, and H,; are zero.

Thus the gravitational null fields in nonempty
space-time may be discussed like those of vacuum
null field if Egs. (3.13), (3.15), and (3.16) remain
satisfied. All the existence theorems for this case may
be recovered from those of corresponding theorems
for vacuum case merely by replacing R0y by Prpeq-
We illustrate this with the help of the following
theorem.

Theorem (3.2): If we define a tensor (., as

Qabcd = abmrP PP o s 3 18)

the necessary and sufficient condition that a nonempty
space-time with vanishing curvature scalar admits a
gravitational null field of type C, is that

Qabcd =0 (3.19)

or equivalently
(R= % ¥R R— % FRYHR o — % ¥ Rypo) = 0.
(3.20)

Proof: Proceeding on the lines of the proof of Theo-
rem (2.1) we -may easily establish this theorem. The
equivalence of Egs. (3.19) and (3.20) may be shown
by recalling the well-known identity,

Rabcd + * *Rabcd = Sadgbc + Sbcgad
- Sacgbd - degac .

In view of Eqgs. (3.21) and (3.15) we get from (3.2)
Popea = %(Rabcd - % xRabcd)

Making use of this equation in (3.18) and (3.19), it is
a straightforward matter to obtain Eq. (3.20).

3.21)

(3.22)

In conclusion it may be stressed that our formalism
for characterization of gravitational null fields may
be extended to any physical situation provided
assumptions (A) and (B) remain satisfied.
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Classical Poisson bracket realizations of semisimple Lie algebras are considered. An attempt is made
to determine the minimum number of canonical degrees of freedom needed to find a realization of a given
Lie algebra. Under the restriction to the symmetric traceless tensor representations of the orthogonal
groups, and the symmetric tensor representations of the unimodular unitary groups, it is shown that
with # pairs of canonical variables one can find realizations of the Lie algebras of O(n + 2) and

SU(n 4+ 1), but no higher groups.

INTRODUCTION AND SUMMARY

ECENT work on the group theoretical prop-
erties of classical dynamical systems has revealed
some new and very interesting properties shared by
large classes of systems.! It has long been known that
the two most familiar systems in classical dynamics,
the three-dimensional Kepler system and the three-
dimensional isotropic harmonic oscillator, possess
invariances under groups larger than the kinematical
three-dimensional rotation group, these groups being,

respectively, O,, the real orthogonal group in four -

dimensions, and SUj;, the group of unitary, uni-
modular 3 X 3 matrices. The papers of Ref. 1 have
demonstrated, however, that invariance under O,
and SU,; obtains for all classical Hamiltonians
involving a centrally symmetric potential. Thus to a
limited extent, and in the context of classical mechan-
ics, the special status of the Keplerian and oscillator
systems as the only ones possessing higher symmetry
has been destroyed.

In a generalization of the above results, and using
somewhat different methods, the present author has
shown that, in fact, all classical Hamiltonians
involving three degrees of freedom automatically
possess invariance under both an O, and an SU,
algebra, independent of the functional form of the
Hamiltonian.?2 This result makes it clear that the
possible symmetries of a classical Hamiltonian
system are determined largely by the number of
degrees of freedom of the system. Of course, it should
be understood that the statement that a system with
three degrees of freedom possesses SU; and O,
invariances is, in general, only a statement about

* On leave of absence from Tata Institute for Fundamental
Research, Bombay, India.

1 D, M. Fradkin, Progr. Theoret. Phys. (Kyoto) (to be published);
H. Bacry, H, Ruegg, and J. M. Souriau, Commun. Math. Phys.
3, 323 (1966).

* N. Mukunda, Phys. Rev. 155, 1383 (1967).

local properties. It implies only the existence of
a set of constants of motion, which may not be real
over all of phase space, but whose Poisson bracket
algebra coincides with the Lie algebra of SU; or O,.
In particular, it may not be always possible to generate
finite canonical transformations leaving the Hamil-
tonian invariant and furnishing a realization of the
group SU; or O, as a whole.

In the present paper we examine in a preliminary
way the connection between the number of degrees of
freedom of a classical system, and the Lie algebras for
which it may be possible to obtain realizations in
terms of functions on the phase space of the system.
We restrict attention to the classical semisimple
compact Lie algebras.® In Sec. I, to show roughly
how the arguments might go in general, we explain
why a system with three degrees of freedom cannot
possess invariance under the algebras of either the
group O; or the group G, (these are, together with O,
and SU;, the only four compact semisimple Lie
algebras of rank two). Section II deals with realizations
of the algebras of the orthogonal rotation groups.
Under restriction to the symmetric traceless tensor
type representations, we prove that with n degrees
of freedom we can obtain a realization of the Lie
algebra of the group O(n + 2), but no higher orthog-
onal group. In Sec. III, under restriction to the
symmetric tensor type representations, we show that
with n degrees of freedom we can obtain a realization
of the Lie algebra of the unitary unimodular group
SU(n + 1) but no higher unitary group.

The analysis of more general realizations of the
orthogonal and unitary groups, and realizations of
the unitary symplectic groups, will be left to a later
publication.

? For a very useful review of the properties of these Lie algebras,
see, for instance, R. E. Behrends, J. Dreitlein, C. Fronsdal, and
B. W. Lee, Rev. Mod. Phys. 34, 1 (1962).
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I. NON-INVARIANCE OF A SYSTEM WITH
THREE DEGREES OF FREEDOM UNDER
GROUP O, OR G,

We recall here the main steps of the proof that all
systems with three degrees of freedom possess SU,
and O, symmetry.> Given a Hamiltonian H(g,, p,) as
a function of three ¢’s and three p’s, it is always
possible to choose additional functions Q, Q;, Q,,
P,, P, such that the following Poisson bracket
relations hold4:

3. (0H9Q ©HoQ
HQY=3(—F——7—— = +41;
. ) gx (3qi op; Op; 3q,~) *
{H,0} = {H, P} ={Q,Q} = {Q P} =0;
{00} =1{P,, P;} =0; {Q;,P;} =4

In other words, any H can be chosen as the first
coordinate of a canonical set of variables, and then
supplemented by additional variables to make up the
whole set. (Of course, Q and Q,, P; will not be
unique.) Any function of ¢,, p; can (at least locally)
be expressed as a function of H, Q, Q,, P;; and
further any time-independent constant of motion is a
function of H, Q,, P, alone. It has been shown in
Ref. 2 that one can find functions of H, Q,, P; whose
Poisson bracket algebra coincides with the Lie
algebra of O, or SU,. Since both of these algebras are
semisimple Lie algebras of rank two, one might
wonder whether one can find functions of H, Q,, P;
yielding realizations of the other two semisimple rank
two Lie algebras, namely, Oy and G,. If this were
possible, then every system with three degrees of
freedom would exhibit invariance under O; and/or
G,, in addition to O, and SU,. However, we show
that this cannot be done.

)

Case of Os: The Lie algebra of Oy (ten elements)
is made up of an O, algebra (six elements) and four
more elements transforming as a four-vector with
respect to the O, algebra. The Lie bracket relations of
the O, algebra may be written

{M;, M} = euMy; {Ny, Ni} = €3Ny . @)
{M;,N}=0; ijk=12,3.

Let us denote the remaining generators of O; by

B,,u =1,2,3, 4. B, has nonzero brackets with both

M; and N,, transforming as a spin } tensor under

each O(3) algebra. Now suppose we have a realization

of the O; algebra via functions of H, Q,, P;, alone.

4 See, for instance, L. P. Eisenhart, Continuous Groups of Trans-
Jormations (Dover Publications, Inc., New York, 1963), Chap. VI,
pp. 281-291.
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(Note that for all practical purposes, H can be treated
as a pure number.) Out of the elements of the O,
algebra, we construct the functions

¢, = tan™* (My/M);
Yo = N;, ¢ =tan"1(N,/N,).

One can check that they obey the Poisson bracket
relations

Wi, v} =193 =0; {pi,¢}=96;. @

Therefore the y, and ¢, are four independent functions
of Q;, P,, and in fact form a canonical set. Locally,
Q;, P; can be expressed as functions of y,, ¢,. Any
function of Q;, P, having zero Poisson bracket with
¥;, ¢; must also have zero bracket with Q,, P;, and
is therefore a pure number (or a function of H alone).
In particular this is true for the two variables

M*=M;+ M;+ M;, N*=Ni+ N3+ Nj---.

€)
But this in turn implies that M* and N2 have zero
bracket with the generators B,, which is impossible
since the latter transform in a nontrivial way under
the O(3) transformations generated by M; and N;.
[Alternatively, one may note that all the irreducible
representations of the Oj algebra by finite-dimensional
Hermitian matrices (with commutator brackets for
Lie brackets) are reducible into a sum of at least two
irreducible matrix representations of the O, algebra,
so that in these representations the operators M? and
N?Z can never be constant multiples of the identity.]®
Therefore, it is not possible to construct a Poisson
bracket realization of the Oy algebra using functions
of just two pairs of canonical variables.

= M,,
(41 3 )

Case of G, The 14-parameter Lie algebra of G,
also contains the O, = O(3) x O(3) algebra, and
eight other elements that transform as a combined
tensor of rank § with respect to the first O(3), and
rank } with respect to the second O(3) in O,. The
arguments in this case are exactly parallel to the case
of Oy, and show the impossibility of a Poisson
bracket realization of G, with just two degrees of
freedom.

At this point the following conjecture may be made.
It is known that there cannot be more than »n inde-
pendent functions of 7 ¢’s and n p’s such that the
Poisson bracket between any pair of these functions

® For every value of n, a finite dimensional unitary irreducible
matrix representation of the group O(2n 4 1) contains at least
two irreducible representations of the subgroup 0(2n), O(2n) being
embedded in O(2n 4 1) in the usual canonical way. For details,
see I. M. Gel'fand and M. L, Tseitlin, Dokl. Akad. Nauk. SSR
71, 825, 1017 (1950).
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vanishes.® At most one can find sets of nsuch functions.
This suggests that if the rank of a semisimple Lie
algebra exceeds n, one cannot find a realization of it
using functions of n ¢’s and » p’s only. A weakened
form of this conjecture is verified for the unitary and
real orthogonal groups in the next two sections.

II. ALGEBRAS OF ORTHOGONAL ROTATION
GROUP FOR SYSTEMS WITH n DEGREES
OF FREEDOM

The real orthogonal group in (n 4+ 2) dimensions,
O(n + 2), has 4(n + 1)(n + 2) generators and is of
rank #(n + 2) or }(n + 1) according as n is even or
odd. The generators form the components of a real
antisymmetric second-rank tensor J,,, 4, v=1,

2, -, n 4 2. The Lie bracket relations are

{Juv9 J}.a} = 6ul‘lva' - 6VAJua' + 6uaJ}.v - 6\!0‘]/1“ . (6)
It is convenient to separate the J,, into the generators,
Jpgs ¥y 8 =1+ n, of the subgroup O(n), and the
rest:

Jr.n+1 = Ar; Jr.n+2 = Br; Jn+1,n+2 = 8. (7)
The bracket relations (6) take the form
{Jrsa Jtu} = 6rthu - 6stJru + 6rths - 6qutr;
{Jr.n At} = artAs - 6stA'r; {AN As} = Jra;
{Jrs’ Bt} = 61‘tBs - 6stBr; {Ar’ Bs} = 6rsS; (8)
{Jrs: S} =0; {4,,8} = —B;
{Brs Bs} = Jrs;
{B,, S} = 4,.

A solution for these generators in terms of #¢’s and
n p’s may be constructed as follows:

Jrs = 4rPs — 4sPs

Ar = (mz - Pz)%%

B, = (a* — J%)ip,/m

S = (@ = IO} (m* — pB}[m

PP=pprs =Y + A4, = M~ (q.p,)
Here, m and « are any two real numbers. These
expressions may be verified to obey the bracket
relations, Eq. (8). This solution is obtained as follows:
We start with the expressions for the generators of the
inhomogeneous Lorentz group in three space and one
time dimension, given in terms of three ¢’s and three
p’s.” These expressions can be modified and extended
to (n + 1) dimensions to yield generators for the
Euclidean group in (n + 1) dimensions, E(n + 1), in
terms of n ¢’s and n p’s. The E(n + 1) generators
consist of the O(n + 1) generators, (J,, and 4,),
together with (n + 1) generators (analogous to B,
and S) that have zero bracket with one another and
transform as a vector under O(n + 1). Denoting
the Casimir invariant of O(n + 1) by J2, we multiply

®

8 L. P. Eisenhart, Ref. 4, p. 283.
7 See, for instance, L. L. Foldy, Phys. Rev. 102, 568 (1956).
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all the components of this (n + 1) vector by a common
function of J2, to get a new vector under O(n + 1),
namely B, and S. We determine this function by
requiring that the Poisson brackets of B, and S with
themselves give back J,,, 4, according to Eq. (8).

The question now is the following: Given the
generators J,, of O(n 4 2), obeying the Poisson
bracket relations (6), can one define n variables g;
and n variables p; as functions of J,,, such that the
Poisson bracket relations of the J,, imply that the g,
and p, are canonical variables? We can show that this
is possible, provided that the given realization of J,,
belongs to the symmetric traceless tensor type repre-
sentations of O(n + 2). This means that the following
identity among the J,,, holds®:

JIIVJld' + Jul']av + J‘val = 0 (10)

[The solution given in Eq. (9) obeys Eq. (10).] In this
case, define

9, = (B* + Sz)%(Ar/S)’ Pr = /(B2 + S2)i‘,

11
B*= B,B,. (n
Using Eq. (8) above, one finds
B* + §*
{qr s qs} = L—S:;—)
X [Jran+1,n+2 + Jr,n+1‘I'n+2,s + Jr,n+2Js,n+1]’
sy Ja n+2
P =2, (5o 4 s (12

X [JrsJa,'n+2 + JraJ'rH—z,s + Jr,n+2']sa]a

A.B
{qr’ps} =0,,+ m
X [Jtan+1,'n+2 + Jt,n+1']n+2,s + Jt,'n+2Js,n+1]'
If we now use (10), we see that g,, p, form a canonical
set.

This demonstration also proves that, subject to the
restriction to symmetric traceless tensor repre-
sentations, we cannot have realizations of orthogonal
groups larger than O(n + 2) by means of functions
of n¢’s and p’s only. This can be seen in the following
way. Notice that the functional forms of ¢, and p, in
terms of J,,, as given in Eq. (11) ensure that those
functions of J,, always make sense and cannot be
identically zero or infinite (hence meaningless)
everywhere, as long as the J,, are real. Therefore, if we
had a realization of the generators of O(N), say, in
terms of n pairs of canonical variables, we could
recover from these generators exactly N — 2 pairs
of canonical variables by means of Eq. (11); the

8 The simplest solution for Jy,y using (n 4 2) coordinates and
momenta, Jyy = gy Py — gvPp , obeys this identity. On the other hand,
this solution of Jy, gives rise to the spherical harmonic type repre-
sentations of O(n + 2), which is just the set of all traceless symmetric
tensor representations of O(n + 2).
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point is that, in spite of special identities that may
happen to hold among the J,, in the particular
realization these N — 2 pairs of canonical variables
cannot fail to exist. It follows that N — 2 < n, or
N < n + 2. By a similar argument, one can see that
any two such realizations of O(n + 2) in terms of
n pairs of canonical variables can be transformed
into one another by a suitable canonical trans-
formation.

1. ALGEBRAS FOR n DEGREES OF FREEDOM
RESTRICTED TO SYMMETRIC TENSOR
REPRESENTATIONS :

The unitary unimodular group in (n + 1) dimen-
sions, SU(n + 1), has n(n + 2) generators and is of
rank . Its generators may be written B2, and obey

(BY)* = Bj; Bi=0;
—i{B, By} = 04B. — O.Bf;
af=1,---,n+ 1
It is convenient to split B into the generators, 4}, of
the SU(n) subgroup, and the rest

(13)

B:ii = B; B"'=B; B:;.;-l = B};
BS=A‘{-62(B/H); i’j,"'=13"',n-

In terms of these, we have

~i{A], 4} = 6{4; — 0,4}
—i{4l, B} = 0{B; — 6}(By/n);
—i{d!, B*} = —6&'B’ + 8/(B*/n); {A], B} =0;
—i{B;, B} = B;; —i{B’, B} = —B’;
—i{B;, B*} = Aj — [(n + 1)/n]8}B;
{B;, B;} = {B}, B'} = 0. 15)
A simple (harmonic oscillator type) solution in terms

of n ¢’s and n p’s is obtained as follows: Instead of
q:, p; we use the variables

a; = (p; — iQ:i)/\/z a’; =(p;, + i‘b‘)f\/i- (16)
The canonical Poisson bracket rules are

{a;, a4} = {af, a,t} = 0;

(14)

{a.af} = —i8}. (n
The solution is then
Al = aja, — (N/n)s};
B, = (x = N)%ai; Bi=(a — N)*a;";
B = {nj(n + )]z — N; (18)

n
N =Y dja,.
1

Here « is any real positive number.
Once again it is possible to reverse the procedure

N. MUKUNDA

and, given generators Bf of SU(n + 1), to define
variables p;, ¢; which are canonical, provided the B#
obey identities characteristic of the symmetric tensor
representations. In this case, the identities may be
written in the following way: Let C, = BB be the
quadratic Casimir invariant of SU(n + 1); define a
variable Q, by

Cy = n(n + DO

Then the relevant identities are?

BﬁB,‘} — BﬁBﬁ = Qf(éﬁdﬂ — 6ﬂ6,‘})
+ .Ql(Bﬁég + Biéi — Bgéﬁ - Bﬁéﬁ). (20)

The a, and a} can be defined by
a;=BJ(B+ @)t of = BYB+ Q)b (1)

as functions of the SU(n + 1) generators. Using (15)
alone, we find

19)

{aia ai} = {a:, a: =0;
{a;, a3} = [—i/(B + QBB — (B + Q4! (22)
+ [(n + 1)/n]B(B + Q,)8%}.

The identity (20), forthecase a =i <m A=< n,
f=pu=n-+1,gives

BB’ = (B + Q){4] + 8/[Q, — (B[m)]}. (23)

Using this in (22) reduces the right-hand side of the
last Poisson bracket to —id?.

Thus from the algebra of the symmetric tensor
representations of SU(n 4+ 1) we can recover 2n
canonical variables. At the same time, this proves
that as far as such representations are concerned,
one cannot go beyond the SU(n + 1) algebra using
2n canonical variables. The arguments are similar to
those given at the end of the previous section; they
hinge on the fact that the functions of the generators
Bf appearing on the right-hand sides of Eq. (21) will
always make sense, since neither B; nor B + , can
be identically zero in a nontrivial realization of
SU(n + 1). Finally we see in the same way as before
that any two such realizations of SU(n + 1) using n
pairs of canonical variables are canonically equivalent.
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? The simplest solution for Bg using (# 4+ 1) coordinates and
momenta, BS = afay — [88(n + 1la%ay, obeys this identity. On
the other hand, this solution for Bf gives rise to all the states of
the isotropic (n 4+ 1)-dimensional harmonic oscillator, which is just
the set of all symmetric tensor representations of SU(n + 1).
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The stationary nonequilibrium Gibbsian ensemble representing a harmonic crystal in contact with
several idealized heat reservoirs at different temperatures is shown to have a Gaussian I' space distri-
bution for the case where the stochastic interaction between the system and heat reservoirs may be
represented by Fokker-Planck-type operators. The covariance matrix of this Gaussian is found explicitly
for a linear chain with nearest-neighbor forces in contact at its ends with heat reservoirs at temperatures
T,and Ty, N being the number of oscillators. We also find explicitly the covariance matrix, but not the
distribution, for the case where the interaction between the system and the reservoirs is represented by
very “hard” collisions. This matrix differs from that for the previous case only by a trivial factor. The heat
flux in the stationary state is found, as expected, to be proportional to the temperature difference (7, — Ty)
rather than to the temperature gradient (7; — 7y)/N. The kinetic temperature of the jth oscillator T(j)
behaves, however, in an unexpected fashion. 7(j) is essentially constant in the interior of the chain
decreasing exponentially in the direction of the hotter reservoir rising only at the end oscillator. in contact
with that reservoir (with corresponding behavior at the other end of the chain). No explanation is offered
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for this paradoxical result.

1. INTRODUCTION

N a series of papers!® Lebowitz and Bergmann

developed a general formalism for describing the
time evolution of a Gibbs ensemble representing a
system in contact with one or more idealized heat
reservoirs (temperature baths). They imagine the
reservoirs made up of an infinite number of identical
noninteracting components each of which interacts

with the system at most once. This . interaction is

impulsive and it is assumed that prior to this inter-
action the components of each reservoir have an
equilibrium distribution with some specified tem-
perature T,, where «=1,-:-,n, specifies the
different reservoirs. Under these conditions the I’
space ensemble density of the system u(x, #) satisfies
the generalized Liouville equation

ou(x, 1) + (4, H) =i1 [K(x, xY)u(x’, 1)

ot
— K, (x', x)u(x, D] dx'.  (1.1)

Here x = (q;, -, 4y, P, " - » Py) is a point in the
phase space of the system, H(x) is the Hamiltonian
of the system, (u, H) is the Poisson bracket between
u# and H, and the right side of (1.1) represents the
effect of collisions with reservoir components on the

* Based in part on a Ph.D thesis submitted by Z. Rieder to
Yeshiva University.

t Present address: Physics Department, Northeastern University,
Boston, Massachusetts.

1 P. G. Bergmann and J. L. Lebowitz, Phys. Rev. 99, 578 (1955);
J. L. Lebowitz and P. G. Bergmann, Ann. Phys. (N.Y.) 1, 1 (1957).

2 ). L. Lebowitz, Phys. Rev. 114, 1192 (1959).

3 J. L. Lebowitz, Rend. Sculola Intern. Fis. XIV Corso Bologna,
Italy (1961). -

evolution of u. K(x,x')dxdt is the conditional
probability that when the system is at the point x’ in
its I" space it will suffer a collision in the time interval
dt as a result of which it will jump to the region
(x, x + dx).

Under very general conditions u(x, ) approaches,
as t — oo, a stationary distribution u,(x). This station-
ary distribution will correspond to the system being
in equilibrium if the temperature of all the reservoirs
is the same; otherwise u,(x) will represent a stationary
nonequilibrium state in which there are heat currents
flowing through the system. (More general non-
equilibrium situations may also be represented in
this manner.!%) It is to be expected for a physical
system of macroscopic size, whose interaction with
the heat reservoirs is confined to specified “surface
regions,” that its bulk properties in the stationary
state will depend only on the temperature of the
reservoirs and not on the details of the interaction
(this, of course, is expected to be true when the reser-
voirs all have the same temperature); e.g., the proper-
ties of a “long” metal bar should not depend on
whether its ends are in contact with water or with
wine “heat reservoirs” at temperature 7, and Tj.
(We are assuming here “‘good” heat contact between
reservoirs and system so that regions of the system
in direct contact with a given reservoir are essentially
at the “temperature” of that reservoir.) This belief
justifies the idealization of the reservoirs already made
in deriving (1.1) and the further drastic simplification
made below, and thus, we expect, for realistic systems,

4J. L. Lebowitz and A, Shimony, Phys. Rev. 128, 1945 (1962);
E. P. Gross and J. L. Lebowitz, ibid. 104, 1528 (1956).
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that the stationary state found from our model will
correctly represent, in the Gibbs ensemble sense,
such a physical system in a steady nonequilibrium
state.

To obtain an explicit simple form for the right side
of (1.1) we imagine the system to contain at its
surface n pistons of mass M,. The ath reservoir will
consist of point particles of mass m, at uniform
densities p, always having a Maxwellian velocity
distribution at temperature T, prior to a collision with
the ath piston. During such an elastic collision there
will be an exchange of momentum in some specified
direction. Under these conditions the kernel K (x, x")
may be specified explicitly [cf. Eq. (2.3), Ref. 2]. Still
further simplification is achieved when m, K M, so
that the piston velocity is changed very little during
a collision. The effect of the collisions with the reser-
voirs on the time evolution of u(x, £) may then be
represented by a Fokker—Planck-type term,*® and
(1.1) assumes the form

———a"g‘t’ D 4 (u H) = 31 9 [P,y + kT M, -2 ,{l.

oP, oP,
(1.2)

Here (Q,, P,) are the coordinates and momentum of
the ath piston (the pistons being part of the system)
and 4, is the “friction constant” of the ath piston
given by [Eq. (3.3), Ref. 2]

A = peABmET/aM?E, (1.3)

where A, is the collision cross section (or area) of the
ath piston. It is easy to show? that u(x, f) satisfying
(1.2) will in general approach, as ¢ — oo, a stationary
value u,(x).

Up to now we have not specified the nature of our
system which determines H(x). We now consider the
case where our system is a harmonic crystal and the
pistons are just some of the particles of the system.
(Their location need not be specified at the moment.)
It is then shown in Sec. 2 that the stationary solution
of (1.2), which u(x, ) will approach as t— oo, is a
Gaussian in the coordinates and momenta of the
system (corresponding to the canonical distribution
when the temperatures of all the reservoirs are equal;
T, = T). The explicit form of the stationary distribu-
tion, i.e., the covariance matrix of the Gaussian, is
found in Sec. 3 for the special case of a one-
dimensional crystal of N particles with nearest-
neighbor interactions in which the first particle is in
contact with a reservoir at temperature 7, and the

® J. L. Lebowitz and P. Resibois, Phys. Rev. 139, A1101 (1965).
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last with a reservoir at temperature Ty and 4, = Ay.
The general form of the distribution for this system,
including its time dependence, has also been discussed
independently by Bils.® Since we are interested in
this system solely as a model, we do not worry about the
drastic simplifications made in the right side of (1.1)
to arrive at (1.2) or the further one, 4, = Ay, required
to obtain an explicit stationary nonequilibrium
ensemble in I' space. What is unfortunate, however,
is that the harmonic crystal is not a realistic physical
system. As is well known,” the harmonic crystal has
an “infinite” heat conductivity; i.e., the heat flux is
not proportional to the temperature gradient when
one considers the relaxation of this system from some
initial nonequilibrium state. This is reflected in the
true stationary state considered here by the fact that
the heat flux is proportional (when N > 1, or strictly
speaking in the limit N — o), to the temperature
difference between the ends of the system, (77 — Ty),
rather than to the temperature gradient (T, — Ty)/N,
which would be the case if there was any anharmonic
coupling. This is also reflected in the form of 7(j),
the kinetic temperature of the jth harmonic oscillator
which is uniform throughout the linear chain, being
equal to (T + Ty), except near the edges where it
varies exponentially in a backward way; ie., with
T, > Ty, T(j) will decrease from its mean value as
j— 1 jumping to a higher value, close to T, for
J = 1. Also the heat flux, J(4), will vary with A, the
strength of the coupling to the reservoirs, in an
unphysical way, reaching a maximum at 4 = éx/-?; w,
(where mw? is the force constant between the oscil-
lators), and vanishing as w?/4 for A — co. This may
perhaps be understood as a mismatching between the
frequencies of the reservoirs and the oscillators. We
have no explanation for the abnormal behavior of 7(j).
An alternate idealization of the stochastic inter-
action between the reservoirs and the system is to
imagine that after each collision with a component
of the ath reservoir the momentum P, will have a
Maxwellian distribution at the temperature 7,

ho(P) = (MJT,[2m)t exp [—P*2MkT,). (1.4)

This is an opposite extreme of the small momentum
transfer considered before and corresponds to the
pistons and reservoir components having the same
mass.> We simplify this further by assuming that

¢ Q. Bils, “‘On the Non-Stationary Equilibrium of a Finite Chain
of Coupled Oscillators™ (to be published).

7 G. Klein and 1. Prigogine, Physica 19, 1053 (1953); P. C.
Hemmer, Kgl. Norske Videnskab. Selskab Fork. 33, 101 (1960);
E. I. Takizawa and K. Kobayasi, Chinese J. Phys. 1, 59 (1963);
E. Teramoto, Progr. Theoret. Phys. (Kyoto) 28, 1059 (1962);
R. Rubin, Phys. Rev. 131, 964 (1963).
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the probability of a collision with a reservoir com-
ponent in a time interval df is given by A df, inde-
pendent of the state of the system. These assumptions
lead to a modified Krook type of collision kernel* and
Eq. (1.2) assumes the form

ou(x, 1)
o + (4, H)

- ;z;{h,(P,) u(x, 1) dP, — u(x, t)}. (1.5)

While the stationary solution of (1.5) for a harmonic
crystal is no longer a Gaussian the stationary covari-
ance matrix of the linear chain and hence the kinetic
temperature and heat flux, is of the same form as
before. The only change is that the system acts as if
the temperature difference (T, — T) was reduced
by the factor [1 + (w?/A%)¢,], where ¢, depends on
and A. These assertions about the covariance matrix
are proved in Sec. 3.

2. STATIONARY STATE OF A
HARMONIC CRYSTAL

The Hamiltonian of a harmonic crystal containing
N’ particles, each being s dimensional, may be written
in the general form®

N N
H=1313x}4+ 33 Qxx; N=sN. (21)
=N 45=1
Here the x;,i=1,---, N, are the Cartesian coordi-
nates of the particles, (relative to their equilibrium
positions), while x;, j =i+ N, is the momentum
conjugate to x; (we have set the mass of the particles
equal to unity). The generalized Liouville equation
(1.2) now has the form

oulx,f) *N 9 Wt
A =5 T (&, d,pw), (2.2
ot igl 0x; ) + %1]2=1 ax,»ax,-( ot (22)

where

2N
&= Eaux,- (2.3)
j=1

and g,; and d;; are elements of 2N by 2N matrices a
and d which we write in the partitioned form

0 —I 00
a= , d= .
® R 0 €
Here 0 and I are the null and unit N by N matrices,

®@,, is defined in (2.1), R,; = 4,4,,0,; [4, given in (1.3)
with M, = 1] and ¢;; = 2kT;R,;. The general time-

(2.4)

8 Cf., for example, A. A. Maradudin, E. W. Montroll, and
G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approxi-
mation (Academic Press Inc., New York, 1963); E. W. Montroll,
Third Berkeley Symp. Math. Stat. and Prob. 3, 209 (1957).
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dependent solution of (2.2) may be found® by diag-
onalizing the right side of (2.2) as was done by Wang
and Uhlenbeck® for fluctuations in electrical circuits.
(Wang and Uhlenbeck consider only the case corre-
sponding to all the 7, being the same.) It is clear,
however, from an inspection of (2.2) that its stationary
solution u, [corresponding to setting du/dt = 0 in
(2.2)], which is all that is of interest to us in this
problem, has the general form

2N
1(x) = 2m) Det [b~?] exp [—%_ S b,.-,.lx,.x,]. 2.5)

i,i=

The matrix b is the positive definite covariance matrix,
and is related to expectation values in the stationary
state by

biy = (rxy) = f ()i, dx @.6)

and we have

A= (x) = f u(x)x; dx = 0. @7
Substituting (2.5) into (2.2) and equating terms yields
the basic, necessary, and sufficient equation

a-b+b-al =4, (2.8)

where a' is the transpose of a. Once b is known all
the properties of the stationary state, e.g., heat flux,
local kinetic temperature, etc., are readily available.
[1t is clear that when all the T, = T then € =2kTR
and p,(x) ~ e PH®) B = (kT)™; ie, the stationary
state is the equilibrium state at temperature T.]

The uniqueness of the stationary solution u,(x) for
the case where the coupling with the reservoirs does
not vanish and the phase space of the crystal is not
divided into different isolated parts (i.e., the repre-
sentative phase point of the system can move between
any two regions via a combination of its natural
motion and collision with the reservoirs) follows from
the general results of Ref. 1, explicitly verifiable here,
that an arbitrary initial distribution will approach a
unique p(x) as t — oo. For the harmonic crystal in
which there are no *“torn bonds” isolating some parts
this condition of ergodicity is clearly satisfied. The
uniqueness of u, for the linear chain is shown
explicitly in the next section.

Equations (2.7) and (2.8) are consequences of the
general equations satisfied by the time-dependent
expectation values A4,f) and b,,(f) defined with
U(x) — u(x, 1) in (2.6)—(2.7). We then have from (1.2)

(d/dOA(R) = —a - A(D)

® M. C. Wang and G. E. Uhlenbeck, Rev. Mod. Phys. 17, 323
(1945).

(2.9)
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and
@lddb(t) =d — a-b() — b(t)-a’. (2.10)

For the case where u(x, ?) satisfies Eq. (1.5) the expec-
tation values of the coordinates and momenta A’(?)
again satisfy (2.9) (with A, replaced by 4;) while the
covariance matrix b’(f) now satisfies the equation

(ddb' () =3 —a-b() — (@) -al +r-V(@®-r

(2.11)
0 0
‘= (0 m).

In the stationary state A’ and A again vanish while
b’ or b satisfy (2.11) or (2.10) with the left sides set
equal to zero.

with

(2.12)

3, EXPLICIT SOLUTION FOR A LINEAR
CHAIN

We consider now a one-dimensional harmonic
crystal (chain of pistons) with nearest-neighbor
interactions, whose ends are rigidly fixed.® The inter-
action with the reservoirs takes place at the first and
last piston, « = 1, N and we set

M=iy=1% Ty=T01+n), G.1)
Ty=T1-19); L1 '
The N by N matrices ®, R, and € now have the form
® =G, G,;=20,;—0,,;—0
(for, j = 1 through N — 1), (3.2)

0, j<N-1,
GN1=GJ'N= —1, j=N—1,
2, j=N,

R =IR; Ry =9,,(6n + d:n), (3.3
€ =2kTAR + nE); E;; = 0,04 — o;n). (3.4)

We now write the 2N by 2N covariance matrix b in
the partitioned form

X z
b= .
zt y

The N by N matrices x, y, and z give, respectively, the
correlations in the stationary state, among the co-
ordinates, momenta and between the coordinates and
momenta

(3.5)

Xy =44 Yis = PPs)s Ziy = (qp;). (3.6)

To obtain the deviation of these correlations from
their equilibrium values at uniform temperature 7,

Z. RIEDER, J. L. LEBOWITZ, AND E. LIEB

corresponding to 7 = 0, we write

x = (kT)®[G + 7X], G.7
y = kT[I + nY], (3.8)
z = Ak TyZ. (3.9)

Using now (2.8) we find the following equations for
X, Y, Z:

= —Z1, (3.10)
Y = XG + ZR, (3.11)
JE — YR — RY =[GZ — ZG]. (3.12)

In addition, X and Y are required to be symmetric
X=X!, Y=Y, (3.13)

while b is required to be positive definite. The quantity
v in (3.12) is » = w?/2, and is the only dimensionless
parameter to remain in the problem.

To obtain an explicit solution of (3.10)-(3.13) we
first note that the left side of (3.12), 2E — YR — RY,
is a bordered matrix (it has nonvanishing elements
only in the first and last rows and columns). Hence
GZ — ZG must also be bordered. Using the explicit
form of G, (3.2), together with the antisymmetry
requirement (3.10), it is easy to show that Z is
necessarily a skew-symmetric Toeplitz matrix when
GZ — ZG is a bordered matrix, and Z may therefore
be written in the form
o ‘7’1\ ¢2\\
mnl'Z W U O PN—2

PN-2 PN

—PN-1
(3.14)

The quantities ¢,, -+, ¢y are simply related to
the entries in the bordered matrix in the left side of
(3.12) and turn out to be

vp;=0n— Yy =8+ Yyy g, (3.15)

where ¢y = 0 by definition. Equation (3.15) implies
certain obvious restrictions on Y in order that (3.12)
has a solution.

Next, Eq. (3.11), together with the fact that Y is
symmetric implies that

XG — GX = —(RZ + ZR). (3.16)

Once again, the right side of (3.16) is a bordered
matrix, which is known in terms of the ¢’s. Unlike Z,
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however, X is required to be symmetric and we find
that one solution is a Hankel matrix:

—®
(3.17)

The solution to (3.16) is, however, not unique.
We could add to (3.17) any symmetric matrix that
commutes with G. Because all the eigenvalues of G
are nondegenerate, such a matrix must be of the form
X = P(G), where P is any polynomial. Nevertheless,
X is required to vanish as a consequence of our last
condition, (3.11).

Substitution of (3.14) and (3.17) into the right side
of (3.11) gives an expression for Y in terms of the ¢’s.
This, when combined with (3.15) yields an equation
for the ¢’s, namely,

N-1

5§ K9, = 04, (3.18)

where K is the (N — 1)-square matrix

v+2 -1
1 v 2, -1
—1~ \\\\\~~ S
K= \\\ ‘\\\ >1

> v 42 -1
-1 »+2
(3.19)

The matrix Y is then the Hankel matrix
Y=E —»X (3.20)

It is to be noted that both X and Y are antisym-
metric about the “‘cross” diagonal [i.e., the (1, N)-
(¥, 1) diagonal], a state of affairs that reflects the
fact that changing the sign of #» corresponds to inter-
changing the reservoirs at the ends of the chain. Were
we to add a matrix X = P(G) to X, as discussed above,
then X would acquire a symmetric component about
the “cross’’ diagonal. By (3.11) Y, too, would acquire
such a component. But (3.15) precludes this possibility.

We conclude then, that the solution to (3.10)—(3.13)
is given uniquely by (3.14), (3.17), and (3.20), assuming,
of course that (3.18) has a unique solution. That this
is so follows from the fact that K is positive definite
forallv > 0.
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To find ¢ we use Cramer’s rule. Consider the general
M-square version of K and let D, denote its deter-
minant. Then

@, = (Dy_1) X (cofactor of Kj,in Dy_,). (3.21)
But, it is easily seen that the cofactor of Kj, is simply
Dy_y_;. The computation of D, is simple. We
observe that if we consider D, to be a function of the
parameter x = 1 + }», then Dy (x) = 2xDyy 4(x) —
Dy o(x), while Dy(x) =1 and Dy(x) = 2x. This is
just the recursion relation for Ujy(x), the Chebyshev
polynomial of the second kind. Using the fact that
Uj(cosh 0) = sinh (M + 1)0/sinh 6, and defining «
by

cosha =1+ v 3.22)
we obtain
@; = sinh (N — j)«/sinh Na. (3.23)
For large N and fixed j we have the asymptotic
formula:

p; =€ = (p), (3.24)
and
pr=e=1+}r— 34+ (3.25)
For » — 0 or co we have
1 - v‘}, as vy — 0,
O (3.26)
U as v — o0,

Finally, we note that b is necessarily positive definite,
a property that can be proved directly from (2.8) using
the fact that @ is positive definite.

For the case of hard collisions, u(x, t) satisfying
(1.5) and b'(r) satisfying (2.11), the corresponding
matrices X', Y’, and Z’ will also satisfy Eq. (3.10) and
(3.11) while (3.12) is now replaced by

E—~ YR — RY 4+ RY'R =[GZ' — Z'G] (3.27)

with » now given by A'2/w?. These equations may be
brought into the same form as (3.10)-(3.12) by the
replacements
X' =04+ v)X, Y =(1+ »p)'Y
Z' = (1 + wp)Z,
which corresponds simply to the replacement of the
temperature difference 7 by #*, where

" (3.28)

._ n . n as v—0,
14+rp) Yy as v— oo
4. PROPERTIES OF THE STATIONARY STATE

Kinetic Temperature

(3.29)

The kinetic temperature of the jth particle is given
by
kT(j,v; N) = (p% = kT[1 + n¥,,] = (x; 0H[0x,)
“4.1)
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(3) T

1 2 P -1 XN

FiG. 1. Typical behavior of T(}).

the last equality holding for all i=1, - - -, 2N indi-
cating some kind of equipartition for the stationary
nonequilibrium state. In the limit of N — cc we have

TIL — (@)1, 1<j <3N,
TG, 3) = [1 — ()™} <j<#%

T[l + nv((Pl)wl_l]’ 1 <]I =N —-j< %N3
“.2)
and
(1, v) = Ty — v, Ty,

T(N,v) = Ty + vp; T, 43

with ¢, given by (3.25) and T, =T(1 4 1), Ty =
T(1 — n). The temperature of the linear chain thus
deviates from its average value T = }(T; + Ty) only
at its edges where it changes exponentially over a
length £(»);

%‘l’_#, v—0,

{) —
3(ln»)71, »— oo.

It is a totally unexpected result of this model that
the kinetic temperature drops below the average value
at the second particle and then increases exponentially
as we move away from the hot reservoir (cf. Fig. 1).

For the case of hard collisions (4.2) is unchanged
except for the replacement of » by #*, while (4.3) now
has the form

T'(1,») = Ty — 2vp, Tnp*,

T'(N, vy = Ty — 2vp, Tip*. (4.5)

Heat Flux

It is easy to show that the energy flux across a plane
separating the (i — 1)th particle from the ith particle

RIEDER, J. L. LEBOWITZ, AND E. LIEB

is given by’
Jicie = 0¥gap) = 0 Zp=J, i=2,---,N—1

The equalities hold in the stationary state where the
flux is constant throughout the system and coincides
with the energy flux j; = —jy, coming from the
reservoir at the left and going into the reservoir at the
right, which is given by? Ak[Ty — T(1, »)]. We then
have using (3.25)

I, ) = (| DT gy 57> Hw*[AKTIL + (v/2)

— b1 + 4T - Ty)
= H?DK(T; — Ty) fori» w
= JAK(T, — Ty) for 1 K w. (4.6)

As expected the heat flux for the harmonic crystal
is proportional to (T, — Ty) rather than to the
temperature gradient (T, — Ty)/N, i.e., the “heat”
conductivity? is proportional to the size of the system.

The behavior of J(A, w) for fixed w is very peculiar.
For small A, A € w, J is proportional to 4 as it should
be, and is independent of w, the whole chain behaving
as if it were just one tight piston. As 4 increases
J reaches a maximum at A= 4}\/ 3w, Jmax =
$%(Ty — Ty)w, and then decreases, vanishing as
A7 when A —-c0; the system now behaves, in the
stationary state, as if the oscillators at the two ends
are at the temperatures of the corresponding reservoirs,
while the remainder are in equilibrium at temperature
T. This latter behavior is quite unexpected. For a
physical system (anharmonic coupling) we would
expect J(4) to reach a limiting value proportional to
the heat conductivity of the system times the tem-
perature gradient.

For the case of hard collisions

70, @) = (A + vy @y 0 7O
"4, ) = (1 + vo) V4, ) —
& (A, @), »—> .
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The eigenfunction expansions associated with the second-order invariant operator on hyperboloids
and cones are derived. The global unitary irreducible representations of the SO.(p, ¢) groups related
to hyperboloids and cones are obtained. The decomposition of the quasi-regular representations into
the irreducible ones is given and the connection with the Mautner theorem and nuclear spectral theory

is discussed.

1. INTRODUCTION

N our two previous works®? the most degen-
erate irreducible infinitesimal representations of
an arbitrary noncompact rotation group SO(p, q)
have been derived.** These representations have
been related to the homogeneous spaces SO(p, q)/

SOO(P -1 9)’ SOO(P’ Q)/SOO(P’ g - 1), and Soo(}"s Q)l’
T2 [5] SO(p — 1,q — 1) which can be represented
by the hyperboloids H%, H? and by the cone C?,
respectively. These homogeneous spaces are of rank
one under the action of the group. The infinitesimal
representations have been constructed by means of
the sets of harmonic functions associated with the
second-order invariant operators related to the
above-mentioned manifolds.

The completeness of these sets of harmonic func-
tions has been proved in the present work by using
the classical Titchmarsh®~-Kodaira® eigenfunction

* On leave of absence from Institute Rudjer Boskovié, Zagreb.

t On leave of absence from Institute of Physics of the Czechoslovak
Academy of Sciences, Prague.

t On leave of absence from Institute of Nuclear Research,
Warsaw.
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sphere and the Lorentz-type group SOy(p, 1) related to the real
Lobachevski space (H} in our notation) are given in the book by
N. J. Vilenkin: “*Special Functions and Theory of Group Repre-
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% For example, the representations of some lower-dimensional
SO(p, q) groups are given in: J. A. C. Alcaras and P. L. Ferreira,
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5 E, C. Titchmarsh, Eigenfunction Expansions (Clarendon Press,
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¢ K. Kodaira, Am. J. Math. 71, 921 (1949).

expansion theory associated with an ordinary second-
order differential equation.

In Sec. 2 the review of the main results in the form
convenient - for applications is given. The other
sections are devoted to the proofs. Thus Sec. 3
contains the proof of the essential self-adjointness of
the Laplace-Beltrami operator on the linear manifold
D(X), which was introduced earlier.? The proof of the
completeness of the harmonic functions which were
constructed in our previous papers*? is given in Sec. 4.
In Sec. 5 we prove’the unitarity and irreducibility of
the representations of the group SOy(p, g) and consider
the decomposition of the quasi-regular representations
into irreducible ones. In Sec. 6 we show an interesting
connection of our approach to the eigenfunction
expansion and the general theory of the eigenfunction
expansion developed by Gel’fand and Kostiuchenko,’
Maurin,® and Gérding.® Appendix I contains some
auxiliary computations. In Appendix II we review the
main results on the representations of the compact
group SO(p).

2. REVIEW OF MOST DEGENERATE
REPRESENTATIONS OF SO4(p,q) GROUPS

We have considered in our previous papers!-? three
homogeneous spaces X of rank one under the action
of the noncompact rotation group SOy(p, q) [see (2.2)*
and (4.1)%]. They can be represented by the hyper-
boloids H? and H? and the cone C?:

G (0 = (PP — e (R
1 for the hyperboloid H?, p > g4,

@D
—1 for the hyperboloid HZ, p > 4.

- 0 for the cone C?,

71. M. Gel'fand and A. G. Kostiuchenko, Dokl. Akad. Nauk
SSSR 103, 349 (1955).

8 K. Maurin, Buil. Acad. Polon. Sci. 7, 471 (1959).

* L. Garding, Seminar on Applied Mathematics, Boulder,
Colorado (1957), pp. 1-30.
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These homogeneous spaces are imbedded in the
(p + ¢)-dimensional Minkowski space M?:% The
considered homogeneous spaces are parametrized by
use of biharmonic coordinates €2 which are defined in
Sec. 3! for the hyperboloids and in Sec. 4% for the
cone.

Let du(Q) be the Riemannian left-invariant measure
on X and let $H(X) be the Hilbert space of L(u) type.
The quasi-regular representation of the rotation group
is determined by

S04(p, 9) 2 g > (U, /) = flg7Q), [eHX).

22

The quasi-regular representation defined by (2.2) is
unitary but reducible. Its irreducible parts are given
below for any particular choice of the homogeneous
space X. Since the homogeneous spaces H?, HZ, and
C? are of rank one under the action of the SOy(p, 9)
group, the ring of the invariant operators of the
representation of the corresponding Lie algebra
R(p, q) is generated only by one operator.!

The generators x,;; of the Lie algebra R(p,q) are
represented by the unbounded operators X;; in the
Hilbert space $(X) [see (6.2),! (6.3),! (4.4),2 and (4.5)%].
Hence, if we consider the representations of the
generators and their polynomials (for instance, the

s Uppadilas
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Casimir operator) we must restrict their domain of
definition to some dense linear manifold in $H(X).
The most convenient choice is the common invariant
domain D(X) for all the operators X;, i.e., D(X) has
the property X;;D(X) < D(X) for any X;.

Let D(X) be the linear manifold determined by
vectors f € H(X) of the form

Q) = P(xL, -+, x7t9) exp{ z(x')z}
i=1

where P(x, - - -, x**9) is a polynomial in x', - - -,

and the x', i=1,2,---,p+q are expressed in

biharmonic coordinates Q as in Sec. 3' and Sec. 4.2

Then the linear manifold D(X) is a dense invariant

domain of the operators X;.

x?“f‘q

The proof can be found in Appendix I. Let us re-
view now the particular cases in detail.

A. Hyperboloid H? ,p 2 g9 > 2

(i) The spectrum!® S(A(Hf;)) of the Laplace-
Beltrami operator A(H?) [see (3.10)*] consists of the
discrete spectrum!* PS(A(H?)): —L(L + p + q — 2),

=3 +q——Gp+g—a)+1,-and
the continuous spectrum CS(A(H?)): A? + [3(p +
q — )% A0, ).

(i) The corresponding eigenfunctions are (see Sec.
3! and Sec. 2?)

RIFY)

L.ls, - l(/) L lg, sl By, -+  ~
le m[p/z] mx At s](Q) Vl{p/s}yi{q/z}(o) Y”:b . ,gz{:)/‘z](w) Y;h» .. .m[q/n](w)’
Ajla, -+ Upgahlas l{.,/z} —yA lg, - s lp/2} Ty, « - lge} [~
le. e ym[:ﬂ]rml: s .m[q/n](g) - l(p/s} l(q/z}(e) Y:u, = ,:t[’:/z](w) me‘ e Jq’l[g,,/z](w)’

where

VE w18 = (1N (tanh 6)/e (cosh gy~ F+e+e® p,
X Mo+ q =2+l + sy + L), L + g + Ty — Lpm)s Ly + 345 tanh® 6],
Pl — Jan — L — 4 + DI + 3OTBE — Tz + lipey + P)]

h 2[IL+ ¥Hp+q— 2)]F[%(l(,;/2) + [{q/2) +L+p+4q-— 2)]F[%(l{p/2) + 7(0/2} — L)] ’
VA adin® = (1/M}) (tanh 0)/a (cosh gy A-Hw+e2, )

X {%[i(q/z) + ey —

M=2r

iAN+¥Hp+q-2)] ‘l‘[](q/Z) = iy —
D(lige) + q/DT(A) :

iA+3q—p+ 2 wn + iq, tanh?® 0},

P{3GA + L + 7{0/2) + 4(p + q — NT{3LA + i{q/2} — Loy + 3q — p +2)]}

The functions Y%

hold for the functlons }’72 liar)

‘(»/ﬂ (w) are defined in Appendix II in the expressions (A1)~(A6). The same expressmns
N (w) except in tilde variables and tilde indices. The variable A is in-

dependent of the indices l,, m,, 7,, and r,, whereas L has the following dependence:

— gy + Iy = —q — 2,

10 In fact, we mean the spectrum of the self-adjoint extension of

A(H?). (For details see Secs. 3 and 4.)

n=0,12--- (2.3

11 We use notation: [a/2] is 3a if a=2r and ¥a—1) if
a=2r+1,r=1,2,--+;{af2} is 4aif a= 2r and Ya + 1) if
a=2r+ 1, r=12---.
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(iii) The completeness relations
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Lalas o Upsadolos -« - Lgra} Lty oo o tpya Ja's v o Ly —
f H, »Y"‘h tn ,m[,?;},t%;, e v’;{w’z}(g) Y"‘t'- T :mh;;]"”‘xﬁ T »”flef:]'(g) dy (Q) - GLL' H 6%‘“' Ham&m{ !Izéz,,z,; -{Ilém;,m;s
'] £ = o

N R
fH ,Ymv o sm{:f:]:mh s .&[qn]
e

At sl et ol
(Q)le'?' M om{ii;g}sm?l’) A t’é

fe/2]

{p/%} [»/2} {a/%} [a/2]
k=2
o () du(Q)
,{p/ﬂ} [»/2] {a/2 fa/2)
= 6(A - A ) H 61;,3;,’ H émkmk’ élx’t’ H 6"&"%’.
k=2 k=1 k=2 k=1

where the left-invariant measure du(Q2) on H? is defined by
du(Q) = cosh?1 8 sinh* ! § db du(ew,,_,) du(@,_1), 8 € [0, o0)

and du(w) is defined in Appendix II by (A9).

-2}

TLots, - ',z(,/a).’lg. - 'J{&/s)
PRl 10 Y
L— ey N, foral for]

(Q)Y Inlg, v .l{n/z}Js. :

LOPERN P E W

ey (0
ey(KY)

o
Adg, el KRR I
+ f dA 3 YA dem b Ty
0 Na

where!* N, is the set of values of indices 4, - -,
Ty .10y, Which are restricted by the conditions (A4),
(A5), and (2.3) and N, the set restricted by the con-
ditions (A4) and (A5).

(iv) Fourier transform:

HHY) > f—y = Ff
= UH Yoyl (Q)F(Q) du(Q);
s Mgy € N a} € 5(5),

where o denotes either the variable L or A and 2 is
the range of o corresponding to the whole spectrum
of A(H?).2

(v) The complete classification of the irreducible

UEE,IS,°'

PARSR (& et R

v 'm[’/ﬂ]'mlr e vm[q/s]’f>; 12 s’

where

A, cv s RARE/ .
(Y e TR Q) = 8(Q — Q5 .

representations can be made by means of the spectrum
of the operator A(H?) and the spectrum of the operator
P, where P is defined in (5.4).2 [On the subspace
$HT < H(S) corresponding to a point of PS(A(H?)) the
operator P has a unique eigenvalue (—)I+¢, whereas
on the linear subset $* corresponding to a point
of CS(A(H?)), P has the “cigenvectors” with both its
eigenvalues.] We denote by y a pair o, p where p is.
the eigenvalue of P:p = +1. Let ¥, be that subset
of N, for which either [, + /5 is even and p = 1
of Ly + Jiyyyy is 0dd and p = —1. (The set N is
already of this type, while N°, has two proper subsets
of this type.) We consider the unitary space D7 of
I* type determined by vectors

s Pipgay € Ny, f € D(HD},

<Yd.ln, s Uppadale

my, -m[pll]nmh *

BN o N7
"f%‘[}ciﬂ’f> '_} Y.:m?”

Uil les (Q)f(Q) du(Q).

Let us keep in mind that the scalar product in D7 is determined by

g, sl AR
', '/’y)y =.NZ <Y7m:' . ‘.m{{z;//'s}].:hx»' . (.%
7

Jay o0ty Uppabala, - ool
[ql’]’f><Y:"l§ s »m{[’ﬂI:l}]::hl’ . ‘{:"‘17:%0/3] * g>.

The completion of the unitary space D” with respect to the norm | - |}, is the Hilbert space $’. The unitary
irreducible representation of the group SO(p, g) and the irreducible representation of the algebra R(p, q) are

defined by

FIRTIN PR A
SOu(p, q) 5 g — Uly" 1= {(Yoplelalm o

. R PIRETN TSV /S |
m(p’ q) 3 Xy > ngly = {(Y:;u?‘ . 'um{[’;l/.l}]n:nlx .. f%

12 The § function 6(2 — 0'; ) is defined by:

f 3Q — 5 WFQ) du€) = fE).

.&‘1,]’ ny), lﬂ s "

le/s]? Xuf)s Ly,-

s P €N, fED(HDY} € H’
P €N, fED(HY)} D'



1082

where U, f is defined by (2.2) and X,/ by (6.2),2 (6.3),
(4.4),2 and (4.5).2

(vi) The quasi-regular representation in (2.2) decom-
poses into the irreducible representations in the
following way:

U,=3o Uk f ® dAUM ® f ® dAUM

in the Hilbert space (see Secs. 4 and 5)

58 =S oo f © dAS @ f © dAS.

B. Hyperboloid HI,p >4 > 2

Changing ¢ <> p in all the expressions of A and
removing the tilde from any variable or index which
previously had it and at the same time placing a tilde
over any variable or index which previously did not
have it, we obtain the corresponding expressions
related to the hyperboloid H?.

C. Hyperboloid HZ, p >2

Replacing the function Yz .- ’iaff}, (&) by the
function (2m)~t exp (it 1) and ‘the jndex lyn bY
#, (as |, = ri;) and putting ¢ = 2 in A we obtain the

desired expressions related to the hyperboloid H?.

D. Hyperboloid H2, p > 2

First we change ¢ == p in all the expressions of A
and remove the tilde from any variable or index which
previously had it and at the same time place a tilde over
any variable or index which previously dld not have it
and put ¢ = 2. Then we replace Y2’ ’(m) @ by
2m) 4 exp (i, @y) and [, by Pin). The expre‘ssmns
obtained of the points (i)-(iv) are the desired expres-
sions of the points (i}—(iv) of the present case. The
pomts (v) and (vi) for HZ, p > 2 differ essentially from
those in A and we therefore write them explicitly.

N. LIMIC, J. NIEDERLE, AND R. RACZKA

(v) The complete classification of the irreducible
representations can be obtained using the spectra of
the operators A(H?), P, and T The operator T is
defined by TY“= ""gll"}’ ’M[)“ (Q) = sign iy, .
Y“‘I ’h/ﬂ} l, ’i;,{;} ](Q) and If = 0 on the sub-
space 550(H2) < $§(H") corresponding to the contin-
uous spectrum of the operator A(H?2). Let us denote by
4 the triplet of indices o, p, 1, where ¢ is the eigenvalue
of T and by N’; that subset of N, for which the
function

o lprayly. -
s MipjalMys

I{m} Q. b,

Yo
» Mq/3]

? 'ﬁ[ulz] eN ?
belongs to the fixed “eigenspace’ corresponding to
the eigenvalue ¢. We define the unitary space D°
and the representation of the group and algebra
analogously as in A.

(vi) The decomposition of the quasi-regular repre-
sentation looks like

U,, = Z @ Uf’(—)L+D'+ ® z ® Uf’(_.)b-%—v,_.

® f ® dAUMO @ f ® dAUMO
on the space

S‘.)(S) Z ® gI;,(—)L+’+ ® E ® gL AyEty
® f ® dAXM ' @ f @ dAXR}.

E. Hyperboloid Hf,p > 1

(i) The spectrum of the Laplace-Beltrami operator?
A(HY) consists of the discrete spectrum PS{A(H?)):
—~LL+p—1), L=~ -3 -3 -} +
1,--+ and the conmtinuous spectrum CS(A(H?)):
A2 4 (3(p — DY, A0, ).

(ii) In the biharmonic coordinates (Sec. 5%, Sec. 4%)
the eigenfunctions are {keep in mind that 6 € (— oo, ©)
in the present case]

1Y1Ln’,z,’-'~':,}’vf[(ﬂﬁ( )= :%_t;_;%lj osh §~+s-1 (L + 1(3/21 + P L~ 1{21»/2; + 2 3 tanh? 0) Y ()
with
L—lyy=—@n+2), n=01,2---. 2.4
YR = oot (R X dem k2 28 B2 e 1L ko) v o)
with
L—lyy=~Qn41D, n=012" 2.5
PRI = TEEPD cosh gt
% oF; (iA + lipig) 2+ ¥p + 1), iA — l{p/s}z ¥p—-35) .3 i . tanh?6 )Y"‘ 1o ()



EIGENFUNCTION EXPANSIONS ON HYPERBOLOIDS AND CONES 1083
A, ll »i{p/a} () 1 h 0—[*(1’—1)+i:\]
gY "‘[’Il]( ) = (2K)i' COS
lA + 1{0/2) + %(p — 1) iA — l(p/2} _ %(P - ) R T
X 2F1( > , 5 55 tanh® 0) Yo -- .,m[/:},]
where

U3y —

L + DIy + L + p)]

2

N =

"L+ 3p — DITBUm + L+ 2 — DITBUgm —
47rF[§(l(p,2} -—-L)]F[a}(l(,,,z, +L+p—1)]

Ly’

Uiy —

L= D@L+ p — DTRgm + L + PTG — L

-nr

_ mfcosh (wA) — (=) cos §(p — Dar] ITRHA + Iy + 3p — DI}

1 ]

sinh (wA) [T{3[iA + 10 + 3 + DI}? ’
_ mlcosh (wA) + (=)' cos $(p — D] IT{AIA + Ly + 30 + DI

2

(iii) Completeness relations have the form

[ Yd' lg
HY

1 Hp/2} (Q)a Y” 12

*»Mp/2]

"‘L'([’;!?s}](Q) d[l(Q) = 6 600’ Halklk ’;I_:_[(s

sinh (wA) [T{3[iA + I, + 3(p — DI}?

{»/2} [»/2]

mymy’ ?

where 8, =6, . ifo=L,0' =L"; 4, =0(A —A')if o = A, 0’ = A’ and 8,,- = 0 otherwise.
o e Y R ) + f dA Z Y e (Q) YA Q)= §(Q— Q' 5p),
L

where N’ is the set of values of indices «,/,, - -,
my ., restricted by (A4), (AS), (2.4), and (2.5) and
N’s the set of values of indices o,l,- -+, my
restricted by (A4) and (AS5).22 The left invariant
measure du(Q) is defined by

du(Q) = cosh?1 6 db du(w,_,), 0 e (— o0, ).

(iv) The Fourier transform:

HHD > f—>x = Ff := {( Y. 02, ) 0€ X,

Ly, >y mpym e N, } € H(S)-

(v) The unitary irreducible representations are
classified by using both of the spectra of the operators
A(H?) and P. (See Sec. 32) We denote by e the pair
«, p and by N, that subset of the set N, for which
either a + /., isevenand p = 1 or « + [ is odd
and p= —1. We consider the unitary space D¢

YAh:

*Mp/2]

l(’li}(Q) - # tanh Bll(v/2)| cosh oiA—f(p—l)

iA+3p—1) [l —iA+Hp+ 1)

determined by the sequences
xe = {< Ycr lz

s Upfe}

oty s

% Iy, e, Mypi2) eN, fe D(Hf)}
The unitary irreducible representation of the group
SOy(p, 1) and the irreducible representation of the
corresponding Lie algebra are defined on D¢ in an
analogous way as in (a).

(vi) The decomposition of the quasi-regular repre-
sentation is given by

U,=Yo uL-r"" g f ® dAUM @ f @ dAUM
on the Hilbert space

$S) =S o~ e f ® dAHH @f@ dA$M

F. Hyperboloid Hl, p > 1 (Upper sheet of H})
The Laplace-Beltrami operator'® A(H}) has only a
continuous spectrum S(A(HY): A2 + [3(p — D,
A €[0, ). The corresponding eigenfunctions are

la0** ¥ {p/2)

F,(Il"””l — -

Ngoys| + 4p; tanh® e) Y

> (@),

‘ Q@m3ETGA) - T(llys) + 3p)
PORHA + 3p — D) + [l IT3EA + Hp+ D + “{p/z)”}
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The completeness relations and the Fourier transform
have the same structure as in A. The unitary irre-
ducible representations of SOq(p, 1) related to the
upper sheet of the hyperboloid H} are classified by
A, A €0, ). The unitary space DA is determined
by the sequences

Alg,t ol
M= (Yl ),

Ig, T, m[vlg} EI.N)A’fe b(H},)}-

The unitary irreducible representations of the group
and the irreducible representation of the algebra are
defined as in A. The decomposition of the quasi-

Aulg,* I3,
f P Ym1. . gi‘:}}ﬂil
e

sHpahle. -
m[:lﬂ W,

o
f dA Z Yy
¢ N
where the left invariant measure on C? is

du(QQ) = r*+-3 dr du(w,, 1) du(@,y), r € (0, o).
(iv) The Fourier transform is defined by
RICY> [~y =Ff
= (Y g
A € (-—--CO, CD), 123 Tty m[qu] E‘N’A} € 5(3)'
(v) The unitary irreducible representations are
classified by A and if p > g = 1 also by an eigenvalue
of P. Let us denote by £ the pair A, p, A € (— o0, ),
pe{£l1}, and let us consider the unitary space D¢
determined by the sequences -
5 -= {<YA e "l'{[:i:}] i;‘1 l{}’{ﬂ/ﬂ’f »

Iy = Piggey € Ng, f€ D(CY)},
where N, is the subset of the set N, restricted by the
condition that either lipsy + Ly isevenand p = 1 or
Ijey + Iy is odd and p = —1. The unitary irre-
ducible representation of the group and the irreducible
representation of the algebra are defined as in A.

(vi) The decomposition of the quasi-regular repre-
sentation into the irreducible ones has the form

+ o0 +00
U, =f ® dAUM @f
-0

Yprahlas
m{:n} My, «

® dAUM
b o}
on

400 40
5(S) mf ® dAH™T @f ® dAH™M
- —w
3. ESSENTIAL SELF-ADJOINTNESS OF
A(X) ON D(X)
To simplify the notations we denote by /, m, I, and

m the sets 12, ey, l{,/z}; my, -, m[,,/,], Ig, ey, l(qu)
and iy, - -« , My, , Tespectively. The set of values of

s QYA el
] [ [

l{%f:/ﬂ(ﬂ) Y, - h

N. LIMIC, J. NIEDERLE, AND R. RACZKA

regular representation is

U, =f@ dAUS on $(S) =f@ JAGH.

G. Cone C? (Upper sheet of C7, p > 1)

(i) The second-order invariant Q, (4.2)? has only
the continuous spectrum S(Q5): A2 + [3(p + ¢ — 2)P3,
A e(—o0, ).

(i) The corresponding eigenfunctions are
Yol )
= (2_"_).» m—i(ﬁq—z)yz.

where r € (0, ).
(iii) The completeness relations have the form?!?

1(€) du(Q)
{p/2} {»/2] a/2 [a/2}
= a(A - A') Ifalklk' H 61’!;;7”);' il)alktk' Hdm,,m,,'s
T2 k=1 k= k=1

Hlam (Q) = 8Q - Q' p),

l(m)
*smln/s]

()Y lyp (@),

RIFTAR/Y
m[{:g]} "th

theindicesl, = * *, Lp/ay My ** s Mpprags s "+ s gy
My, e, Mg, 1., the set of integers restricted by
the conditions (A4), (A5), we denote by N

The restriction of the differential operator A(X)
which was derived in Refs. 1 and 2 to the dense
invariant linear manifold D(X) is denoted by A®. The
operator A’ is symmetric on D(X). We prove in this
section that A® is the essentially self-adjoint operator
on D(X) for any particular case of the homogeneous
space X.

A. Hyperboloid H? ,p 2 ¢ > 1

The operator

P D)3 f = Prygaf = {Y1,(0) Y(@)
x [ T TR@/(@) o) du@), e X} £ B(X)
X

is a bounded symmetric operator on D(X) satisfying
Pl = Pan on D(X). As D(X) is a dense linear
manifold in $(X), P,,,;, has the unique extension to
the projector P, ;. on H(X), the range of which is
the closed subspace $),,,7,(X). The subspaces ,,,7,(X)
with a different set of indices are orthogonal to each
other and their sum over all /, m, /, i € N’ is equal to
the space H(X). This follows from the density of
D(X) in H(X) and the completeness of the orthogonal
set of harmonic functions Y! (o) in the Hilbert space
$(S*71). [For the completeness of the set of Y (w)
see Appendix I1.]
As P, maps D(X) into D(X) and A*P,;, —

P,xA* =0 on D(X) every subspace $,,.5.(X)



EIGENFUNCTION EXPANSIONS ON HYPERBOLOIDS AND CONES

reduces A’ to the symmetric operator
D?’mlm : Q(nglm) 3 f_b D?mlmf

1 2 1 1
- h*~*Osinh™*0 2 /(2
{ cosh™ 0 sinh™6 30 - sin f( )
lawl +9=2) .
sinh® 6 F&
_loplem +p—2) F(Q), Qe X} € Sintm
cosh®6 ’ i
, G.1)
where D(Dimtm) = D(X) N i X).

Proposition 3.1: The operator D¢, ., is essentially
self-adjoint on D(D;, 1,5).

Proof: Let us define the mapping
V: Bumin(X) A D(X)2 f > Vf
{[duw)/dol* f YL () Y4(@)f(Q) du(w) du(@),

6e, oo)} € 840, o),

where by £%a, b) we denote the Hilbert space of
L? type over the interval (g, b). The mapping ¥V can
be extended to the isometric mapping of the Hilbert
space 9,,.14(X) on to the Hilbert space £2(0, o) such
that V1V =171 on $,,,(X) and VV1=1 on
£%0, o). The symmetric operator Df, ;. on D(D;, 1)
is mapped by V to the symmetric operator

A DA 3 f— A
={(- 5+ Kiin®) 10, 00, )

€ £%0, ), (3.2)
where D(4°) : = VD(D;,p,) and

K> 6) = I{alz)(l(q/e} +qg-2)+1Hqg-2P -1
Ysatliasa) sinh® 6

_ I{W’2}(I{v/2} +p—-2)+Brp-2P -1
cosh? §

+ (&‘;Lz-)z. (.3)

As the properties of the corresponding objects in the
Hilbert spaces §,,,1,(X) and £%(0, o) are equivalent,
we study from now on the symmetric operator A°
on (4% for which the well-established theory of the
second-order differential operators can be applied.
Let A be the restriction of 4° to
D(A4): = {feDUA)|f0)=0, f(0)=

The closure A is self-adjoint on D(4) if and only if the
differential equation

d*p(6)/d6 = (Kighy 1m — D(0) (34
for any nonreal 4 and any ¢ > 0 possesses only one
solution () € R%0,c¢) and only one solution
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Yo(’) € 2%(c, )3 If Iy %0, Eq. (3.4) has the
property mentioned so that A® is essentially self-
adjoint on D(4") in this case. If I, = 0 the assertion
still holds if ¢ > 3. Finallyif J,,, = 0 and g = 2 or
g = 3, both linearly independent solutions of Eq.
(3.4) are from £20, ¢). This means that A
is not self-adjoint on D(4) and it does not follow
automatically that 4* is self-adjoint on D(A%).

We now prove that 4° is essentially self-adjoint on
D(4%) even in two exceptional cases. Let us consider
the case ¢ = 2. The domain D(4*) of the adjoint
operator A* is determined by vectors g := {g(0),
6 € (0, o)} € £%(0, cc) for which g(0) is differentiable,
g'(0) is absolutely continuous and

A*g = {—g"(0) + Ka{,;g}f{,;,}(e)g(e)a 6 € (0, )}

€ £%0, ).
Let us derive the behavior of the function g(8),
g € D(A¥) at the origin. Every continuous solution
g(0) of the differential equation

g'(0) — Kil ot @8®) = h(6), hef(0,x) (3.5
in the interval (0, 1] has the form

g(6) = auy(0) + buy(6)
+ f ? ux(O)us(8') — ux(Bur(6")
o W(uy, uy)

where u,(6) and u,(0) are two linearly independent
solutions of Eq. (3.5) for A(0) =0, W(4,u,) =
u(0)uy(0) — uy(O)uy(8), 6 € (0, 1] and a, b are complex
constants. The existence of the solution (3.6) in any
closed interval [6,, 1], 6, > 0, can be proved using
analyticity of functions u, »(6), integrability of 4(6) in
(0, 1) and the Titchmarsh lemma.*

Let us choose as u,(9) and uy(0) those solutions of
y" — Ky = 0 for which

h(6') d8', (3.6)

u4(0 u,(0
lim ‘(%)= 1, lim%()— =1,
o0 0 -0 8% In 6
3 gt
im 26%u(6) = 1,

lim 2 — uy(6) = 1.

. 80 g-0 Ind

One can easily verify by direct calculation the possi-
bility of this choice. Then by rough estimate of the
third term in (3.6) we find that this term vanishes
faster than 6% at the origin and its derivative faster
than 1/63, so that the first two terms describe the
behavior of g(6) at the origin. The domain D(A) of
the closure 4 is the linear manifold determined by
those fe D(4*) for which B(f,g) =0, geD(4¥),
where?s

B(f, ) = lim 6 g'6) — g0)f ).

13 M. H. Stone, Linear Transformations in Hilbert Space (American
Mathematical Society, New York, 1964), Collog. Publ.,, Vol. XV,
Chap. X; M. A. Neumark, Lineare Differentialoperatoren (Akade-
mir-Verlag, Berlin, 1963), Chap. V.

1 Lemma 5.6 of Ref. 5,
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As the domain D(A4?) of the closure A° of the sym-
metric operator 4° on D(4*) contains D(4°), it hasto be
B(f,,8) =0for

fo := {(sinh 8)% cosh#»—1 g P(cosh 6)

x exp (—2 cosh? 6), 0 € (0, ), P(1) = 1} € D(4*).
This condition implies b = 0 in (3.6). Then any two
vectors g, g, € D(4*¥) satisfy B(g,, g.) = 0, i.e., the
adjoint A*** of A°* is defined on D(4**), i.e., 4°**
is self-adjoint on D(4***). In other words, 4° is
essentially self-adjoint on D(4*). The analogous proof
holds for g = 3,1, = 0.

From Proposition 3.1 and the decomposition

HX) = 3 Sumin(X)
¥

follows Proposition 3.2.

Proposition 3.2: The operator A® is essentially self-
adjoint on D(X). The domain D(A*) of the self-adjoint
operator A* = A® is determined by vectors f € H(X)
for which Py, f € D(Dj7zz) and Z || Dif Pyt S 12 <
0. The operator A* on D(A*) is defined by A% =
‘szgnlszmlmf-

B. Other Hyperboloids H? and HY

As the form (3.2) of the operator 4° holds for any
type of hyperboloid, the proof of the essential self-
adjointness of A® on D(X) can be carried out in an
analogous way to A.

C. Cone C?,p2g2>1
The operator 4° in the present case is defined by

B4) = V(D(X) N Huin(X)) 5 f — Af

(araio+ [(&i‘-—%—‘—z)— 2o

re(O, oo)} € D(A4%).

The associated differential equation

Era o) - [ (=3~ - 2w =0

has the solutions 3.7

ior) = exp {(—} £ {I}(p + ¢ = 2P — P)Inr).
Again A4* is the self-adjoint on D(4*) as for nonreal 1
one of pX(r), i = 1, 2, has the property y(-) € L0, ¢)
for every ¢ > 0, whereas the other has not this
property and the same relation holds at infinity.

4. EIGENFUNCTION EXPANSION
In two previous works? we used the set of those
eigenfunctions Y*%(Q) with the eigenvalue A of the
differential operator A(X) or Q, which were restricted
by the boundary condition ¥2%(Q,) =0, where
Q, = {6 =0, v, @}. Let us prove now that this set
constitutes the complete set of eigenfunctions of the

]
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self-adjoint operator A** which was defined in the
previous section.

A. Hyperboloid H?,p > g > 1

We have shown that the operator A* is reduced to
the operator D3 ;. on every subspace $,,/4(X). Then
by the mapping ¥ the operator D2, has been mapped
to the operator 4% (3.2) and the space §,,;4(X) on
to the space £¥(0, c0). In this way the problem of
the eigenfunction expansions associated with the
operator A* is reduced to the investigation of the
eigenfunction expansions associated with the operator
A* or, in other words, associated with the second-
order ordinary differential equation (3.4). Except for
liyey = 0, g = 2and [, = 0,9 = 3 there is the unique
solution of the eigenfunction expansion associated
with the differential equation (3.4)® and this expansion
is just that one which is associated with the self-adjoint
operator 4%, In two exceptional cases we have to
impose boundary conditions in such a way that
the corresponding expansions are associated with the
self-adjoint operator 4*. For [, =0, ¢ =2, the
behavior of the function g(6), g € D(4*), is described
by (3.6) where b = 0 as proved. Since B(y,,g) =0
according to the proof of Proposition 3.1, we con-
clude that® fy() = oo and consequently only the
function u,(6) enters the expression for the eigen-
function expansion.® A similar conclusion holds for
the case I, =0, g = 3: only that eigenfunction
*(0) of (3.4) enters the expression for the eigenfunc-
tion expansions for which »*(0) = 0.

The differential equation (3.4) has the form of the
Schrodinger differential equation and we prefer to use
the method of Jost and Kohn!* adopted for such
equations rather than the general method®® The
solution of the differential equation (3.4) which is
regular at the origin has the form

9(6, ) = (tanh 6)lnrHeD (cosh gy-There-ar-ut
x F(a,, b,;c; tanh?6), (4.1)

where ¢ = [, + q/2 and
20y = ligy + lpy + M + 4 — 2)

+ (I} +q — 2F — A},
2b, = lggy — Iy + Hp + 94— 2) '

+ {Bp + 94— 2P — 2}
The solutions of (3.4) which behave like

exp {FO([3(p + ¢ — 2P — D}

“.2)

are

V,(8, ) = (tanh gl +¥ie-1 (coch gFtisrenr-4

. .1
X F(as,bsi 1 (BG+a— 2P A},mh,o).
@43)

15 R. Jost and W. Kohn, Phys. Rev. 87, 977 (1952).
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These two solutions are generally singular at the origin.
The connection among the solutions (4.1) and (4.3)
can be easily described by introducing the variable
p=—¥p+q—2)+ {lip + ¢ — D — A and
denoting ¢(0, p) = (0, 4), u (0, w) = V_(6, 3).

90, ) = W_(u_(6, p) + W, (u, (0, p), (4.4)
where

Wi([l) — 2ﬂi(wa—2)+nl

« TOT{:B0 + g — 2) + 4]}

Ila ()IT[b. ()]
Let us introduce now the function

(0, wu_(6', w) for

4.5)

W, (») 726
G(g, 0, 0") = N (4.6)
WO W68 o o g
W, (1)

The function G(u, 8, 0") is analytic in the half-plane
Re u > —3¥(p + q — 2) having poles at zeros of the
function W, (), i.e., at the points b,(u) = —n. The
number of poles is finite and we choose R in
the contour C of Fig. 1 large enough to enclose all
the poles. Let us multiply the equality

5{; Gu, 6, 0') du = 21 S Re Gluy, 6, 0')
C n

by f(0’) and integrate over the interval (0, o0), where
f(0) is an infinite differentiable function vanishing
faster than any power in 0’ for large 6'. The limiting
value of the expression obtained as R — oo has the
form

O =§

o0, 1) [ 90, 1) i o
j 22 7o'y do

+J‘°° do
o 27 |W,[—-3(p + ¢ — 2) + io]®
x o[, — i(p + g — 2) + io]

x [0 i+ a - D+ el @) v

4.7)

Here the function W_(u), p = —%(p + g9 — 2)

+ {[3(p + 9 — 2 — A} isessentially the Titchmarsh

spectral function m(x) which determines the spectrum
of the associated differential operator.

Now we can write the eigenfunction expansion of

an arbitrary function f(Q), f€ D(X). The decom-

position

f= %ﬁﬂdﬂ’ fE D("/)’ ﬁmim € D(X) N sjlmlm(X)

has a finite number of terms different from zero.
Hence for the eigenfunction expansion of the function
f(Q), feD(X) it is sufficient to consider the eigen-
function expansion of f,,a(2), fium € D(X) N
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Im #-plane
FiG. 1. The contour of the inte- R
gration for the function G(y, 0, &). / o 2
= o
2
4

Drmin(X). This latter problem is already solved, as the
eigenfunction expansion of f,,;, (Q) is an image under
V-1 of the equality (4.7):

St @) = 3 YEL(Q) f YEL(Q) frmin Q) Q)

+ f dAYAL(Q) f YAL(Q) fomin( Q) dp(Q), (4.8)

where the functions Y,I;f,g(Q) and Yﬁ%(ﬂ) are defined
in Sec. 2. We remark here that the equality (4.8) is
valid for every point Q € X.

The eigenfunction expansion of an arbitrary
S, f€H(X) can be obtained using Cauchy sequence

Ja > 1o fu€D(X).

B. Hyperboloids H? and H}

The eigenfunction expansion associated with the
operator A*(H?) is the special case of the eigenfunction
expansions derived in A. The eigenfunction ex-
pansions associated with the operator A**(H?) can be
derived in an analogous way to that of A. In the
course of the proof the required eigenfunction
expansion associated with the operator 4* is already
calculated in Example 4.19 of Ref. 3.

C. Cone C?,p2>qg2>1
The eigenfunction expansion associated with the
differential equation (3.7) can again be constructed
using the general theory. But we can avoid the tedious
computations of both the Titchmarsh spectral function
and the corresponding linearly independent solutions
if we start from the Mellin transform

1) = dsr L "GN dr. (4.9)

Choosing ¢=1% and s=4+4iA and denoting
@(r, A) = r** we obtain the following eigenfunction
expansion associated with the differential equation
3.7):

LA™ aagtr ) [ "o, AYFG) dr, (410
10 =5 [ s, [ "o, s ar, @10

where f(r') is a function which has a derivative of any

c+io

2mi
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order and vanishes at infinity faster than any power
inr'.

Now the eigenfunction expansion of an arbitrary
function f(£2), f € D(X), can be obtained using (4.10),
the mapping V~! and the decomposition H(X) =
> Syum(X). The expansion of a function f(Q),

{A—[@+q—2PH for

ud) = {0 for 4,
_(L e Lmin + 1) for L+1
where Ay = —L(L + p + g — 2), defines a measure

on the semi-ring consisting of the empty set ¢ and the
cells (A, A}, As]) = p(Ae) — w(A).™® The ex-
tension procedure furnishes the o ring of all o-
measurable sets E with the Stieltjes—Lebesque measure
u(E). The set of all objects
2= X Ae S, Im, ] e N,

where zil. are equivalent classes of complex u-
measurable functions such that

is a Hilbert space 5(5) of the L%*u) type. Here
N, © N is defined in Sec. 2 for particular cases.

Then the results of this section may be put in the
form of Proposition 4.1.

Proposition 4.1: The mappings
F:9(X)sf—y=Ff
= [s-tim | @@ duo;
X
Ae S, I m, 1 e Jﬁ: e $(S), (4.12)
THHS)s x> f=Fy
- {s. im | S v Q)i du(); Qex}eg(X)

4.13)
are, one to the other, inverse isometric mappings:
F7'F = Ion $(X)and FF~! = I on $(S). The symbol
s. lim in (4.12) means the strong convergence f, — f,
f» € D(X) and s. lim in (4.13) means the strong con-
vergence ¥, —> %, fn:= WYHL £ f.e D(X), Ae
S(A*), 1, m, I, m € \°,}. The operator A* is diagonally
(or spectrally) represented in $(S).

5. UNITARITY, IRREDUCIBILITY,
AND MAUTNER'’S DECOMPOSITION
The unitary representation SOy(p,q) > g — =
ML(Uf); AeSQA), I, m, I, meN,}e 55(5) is
reduc1ble [This representation and the quasi-regular
representation (2.2) are unitarily equivalent with

S(a*

'® A. C. Zaanen, An Introduction to the Theory of Integration
(North-Holland Publishing Company, Amsterdam, 1961).
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fEH(X), has to be understood in the sense of the
Cauchy convergence f,, — f, f,, € D(X).

In the following considerations we deal always
with the hyperboloid H?, p > q > 2. However, our
statements are also true for other cases.

The nondecreasing function on S(A(H?)),p > q > 2

A>3 +4q9—2)P
KA<L[}p+q-2P
<A< Ay,

4.11)

respect to the operator F of Proposition 4.1.] The
carrier space of an irreducible representation is
necessarily an eigenspace Q% with an eigenvalue
A€ S(A*). If the eigenspace £**" corresponds to the
proper eigenvalue, i.e., to 1 € PS(A*), then 24" is a
proper subspace of the Hilbert space $(S). (The
image of these spaces under F! are the irreducible
spaces considered in Ref. 1.) In the case of the
representation of the noncompact group the invariant
operator may have a continuous spectrum besides a
discrete one as in our case. The “eigenspace” ¢*
corresponding to 4 € CS(A*) is not a proper subspace
of the Hilbert space $(S) and one needs to extend such
eigenspace to a certain Hilbert space J¢*#" in order to
obtain a representation on the Hilbert space J¢4r
Then one expects that the Hilbert space $(S) will be
decomposed into the sum over $* A PS(A*%) and
an integral of $*, 1 € CS(A**). Such decomposition of
the Hilbert space $(S) into a so-called direct integral
of Hilbert spaces was investigated by von Neumann.'?

Let us try to construct the desired decomposition of
the Hilbert space $(S). The structure of the Hilbert
space $(S) leads us to consider a unitary space of
I2 type determined by vectors y* : = {y*L(f);fe H(X),
I, m, I, i € N°;}, where %I (f)— (Y;‘,ffn,f) As

( @Ax Nl)) X $(X) = 25h(f)
AeS(A™)

is not a bounded mapping we restrict ourselves to the
mapping
U, 0% %)) x 200~ i)

Aes(A"')
and justify this by the following two propositions.

Proposition 5.1: For every I, m, I, e N, , fe D(X)
the function x* (f) is analytic in the plane cut along
the segment (— oo, [3(p + ¢ — 2)]?] and tends to zero
faster than any polynomial in 2 along the positive real
axis. Moreover, for every bounded subset B <
U leS(Am)(A x N,) there exists a f€ D(X) such that
1) # 0on 3.

17 J. von Neumann, Ann. Math. 50, 401 (1949).
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Proof: Let Z be any bounded convex domain in the
cut A plane. Using expressions (4.1) and (4.3) and
the definition of the mapping of Sec. 3 we easily find
the uniform bound of the functions Y*L(Q) in the
domain % x X:

[Y2A(Q)] < A) exp {B)6} |Y1(0) V@), (5-1)
where the constants 4(Z) and B(Z) depend on the
domain Z. The analyticity of x¥L(f) in the cut
A plane follows from the analyticity of the function
Y24(Q) in the cut A plane for any Q € X, the bound
(5.1) and the bound

|f(Q)] < C cosh® 6 exp (—2 cosh? 6),

€ D(X).®® The asymptotic behavior of yXL(f) along
the positive real axis follows from the equality

AL (f) = f VAL QLAY FI() du(<),

the invariance of D(X) under A* and the uniform

bound |Y2L(Q) < Kexp(MB)on R X X, where

= {4; [3(p + ¢ — 2)]* < 4 < o}. The second part

of the proposition follows from its first part and the
density of D(X) in H(X).

Using Proposition 5.1 the following is easily proved.

Proposition 5.2: The linear manifold D* determined
by vectors y*:= {x*L(f); L, m, ] meN,, fe D(X)}
is dense in the Hllbert space $* of /2 type, vectors of
which are sequences y*:= {y¥%; I, m, I, i € N;} for
which||x*} = 3, X752 < .

Let O := {f1, f;, " '} be an orthonormal complete
sequence in the Hilbert space $(X) which is obtained
by the Smith orthogonalization process from a
sequence g, g, * + determining D(X). In our case
the denumerable set of vector fields S(A*) x 03(4,1,)—
=R L om, | meXN,, f,€0} forms a
so-called fundamental family of vector fields.!®20
The vector field S(A®) 5 A —> gt := {pib: I, m I, me
N} is called y-measurable if

G v = 2 2L f L

is a u-measurable functlon for all n. The direct
integral

b= . 08 5:2)
8™

of the Hilbert spaces $* is the Hilbert space $ of
equivalent classes of the u-measurable vector fields

18 M. A. Lavrentiev and B, V. Shabat, ‘““Methods of Theory of
Functions of Complex Variables,” “Nauka,” Moscow (1965) (in
Russian).

19 K. Maurin, The Methods of Hilbert Space (Mir, Moscow,
1965) (in Russian).

20 ¥ Maurin, ‘“‘General Eigenfunction Expansions and Group
Representations” (Lecture Notes), ICTP, Trieste, preprint IC/66/12.
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x* for which [gm., 212 du(4) < co and where the
scalar product is defined by

W =[ .. 53

The Hilbert spaces $(X) and $H(S) are isometrically
isomorphic with respect to the Fourier transform F,
and $(S) is represented as the direct integral of

Hilbert spaces H*.

Unitarity: We obtained the Hilbert spaces 33‘, closed
subspaces $*# of which may be the carrier spaces of
the unitary irreducible representations of the group
SOy(p, ). We first prove the unitarity of the repre-

sentations on 5‘ for every 4 € S(A*). (This induces the

unitarity of the representation in any of $*.) For the
proof of the unitarity we need the auxiliary:

Proposition 5.3: The properties stated in Proposition
5.1 for the function y24(f), fe D(X) are also valid
for the function yXL(U,f), f€ D(X).

Proof: From the definition of the function y*L (U, f)
and left invariance of the measure du(£2) it follows

2T, f) = f Q) f(Q) du(Q).  (5.4)

Now, the proof of Proposition 5.1 may be applied as
Y1 (2Q) has essentially the same bound as in the
proof of Proposition 5.1 because the finite point €2
under the action of g € SOy(p, q) is transformed again
to a finite point Q' = gQe X.

Proposition 5.4: The representation

SOo(p, 038> Uzx
{x (U,f),l msl me'N,A’fEE(X)}EDl
(5.5
isnorm preserving in D* and has unique unitary exten-
sion V}in $* = D* for every A € S(A*).

Proof: The unitarity of the representations of the
group SOy(p,q) on $*, A€ PS(A*) was considered
in Ref. 1. (In fact, there we worked with the spaces
F1$%). Now we give the general proof valid also for
A € CS(A*).

Because of the strong commutativity of U, and A*,
for any pu-measurable function F(4), uniformly
bounded on S(A*®), we have

(U.f, AU R — (f, F(A*)Rh) =0, f, he D(X).
(5.6)
According to Proposition 4.1 we can rewrite (5.6) in
the form

L(A,,)IF WF{UR* Uy — O 7).} dp(d) = 0

2, vred. (5.7

Because of the continuity of (Uy?, Uiy?), — (% v%)
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on CS(A*) (Propositions 5.1 and 5.3) and bounded-
ness on PS(A*) and because of the arbitrariness of
the uniformly bounded function F(4) on S(A*) we
conclude (Ujz*, Upy?), = (x*, p*),, A€ S(A), ¢*, p* €
D% As D?is the dense linear manifold in $*, U?
can be uniquely extended to the unitary operator
Viin §* = D*. [The Hilbert spaces $* are representa-
tives of $* and V% is the representative of (73 of the
decomposable operator U, = g0, 0% du(4) in =
IS(A”)SZJ;' du(4).]

The following proposition is not directly connected
with our considerations but it shows a deeper property
of the linear manifold D*.

Proposition 5.5: The linear manifold D* consists
of analytic vectors. The operators X7, are essentially
skew-adjoint on D%,

Proof: The operators X} are skew-symmetric
operators on D* as V., is unitary in $* and
NV — D — X512, — Ofor x* € D* as t — 0.
Let us first show that any vector x* € D* is an analytic
vector for the operators L}, (L} is the representation
of the generator /;; of the one-parameter compact
subgroup?). First, one proves that —>,_, L% is an in-
variant operator using the commutation rules. Hence
it is proportional to —A(S*™) — A(S*?) as the
representations are the most degenerate ones. We do
not lose on generality, supposing that the constant
of the proportionality is equal to one. For any
x* € D* the decomposition

A — A A A
r= le(m/z}’[(qlz}’ Xlipraliaray € Digprapliny >

where 55;‘{7/2),7(0 1y 2re finite-dimensional vector spaces
determined by vectors y*4(f), f€ D(X) with fixed

l{m}](a/s) € N’;, has a finite number of nonvanishing

terms. We easily find the bound
IlL:ixl‘lf. S [lmax(lmax + P 2)

+ hna(Toax + 9 — D113
from the expression

—S@r= 3
Usraliora)
+ Ly + P~ DMl tign -
Now, using the irreducibility of the algebra determined
by L, in the subspaces $7 ;.. we find the estimate

[i{q/z)({iq/z) +4q9—2)

N < [lmax(lmax +p- 2)

+ hnax(lmax + 4 = DT I2*:. '€ D~

(5.8)

From the inequality (5.8) we easily see that y* € D is
an analytic vector of L}, and consequently L}; is

1

essentially skew-adjoint on D*.2

n
[T L.
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The estimate for ||TT2, B}, ., x* €D* can be
obtained in an analogous way starting with the in-

variant operator
> (B — 2Ly}
i<j i<j

on D*:
11 B?,;,x“ N

a=1
< [A+(lmax+n+1)(lmax+P+"+1)
+ (ax + 1 + Dilnax + p + 1 + DI 1215,
ed (5.9
It follows again that y* € D% is an analytic vector for
B}, and that B}, is essentially skew-adjoint on D%,

Irreducibility: Let us try to find the invariant
subspaces $** of the space $H* with respect to the
representation of the group (5.5).

In our previous work? we have considered the
representations of the Lie algebra R(p,q) of the
group SO(p, q) on the Lie algebra of the unbounded
operators X2 in the Hilbert space $*, 1 € S(A*). The
irreducibility with respect to the algebra of the
operators X2 has been defined in the following way:
The representation
R(p,q)> Xy~ Xp* 1= {yhm(Xusf)s bm, Lin e Ny,

FeD(X)}
is called irreducible on a common invariant domain
DA if for any two x%, y* € D? an operator A* exists
in the enveloping algebra such that (x*, A%p*), # 0.
The irreducible representations of the Lie algebra were
found in Refs. 1 and 2 and they are reviewed in Sec.
2 of the present work. It was established there that
the common invariant domain D*#" has the following
structure:

I%Jr==
o larmeN'y
where $; . 1., are finite-dimensional vector spaces
determined by vectors x*i(f), fe D(X) with fixed
Ly gy € N4 and N¥ is a certain subset of the
set N, .

Proposition 5.6: The representation (5.5) is irre-
ducible on the closed subspace H*ir = Db of the
space $*.

Proof: Every finite-dimensional subspace $; .,
is irreducible with respect to the representation L,;
of the Lie algebra /,; of the maximal compact subgroup
SO(p) x SO(g).! This fact and the continuity of the
operators L;; in the Hilbert spaces $j, .., induces
the irreducibility of the representation SO(p) x

4 o Uo/a}l{e/a} LI

31 E. Nelson, Ann. Math. 70, 572 (1959).
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L?A = (in 55‘}{" japliary - HEDCE any igvariant subspace

2,k =12, of the space H*** with respect to the
representation of the group SOy(p, ¢) must have the
form $¢ = 21y ligmerns ® Dl ey » Where Ny is
an infinite subset of the set N47. Then we can introduce
the operator K4, eigenspaces of which are $}, with
the eigenvalue 1/K. From K*U?— UK*=0 in
H*ir = X @ H? and the fact that D*" js the common
invariant domain of K*, L},, B}, we conclude K*B}, —
BLK* = 0 in D** in contradiction to the results of
Refs. 1 and 2.

Mautner’s Decomposition: We have determined the
unitary _irreducible representations of the group
SOy(p, q) related to three homogeneous spaces H?,
Hg, and C?. Let us now discuss the consequences
which follow from the comparison of our results with
the general theory. Let Ry be the smallest weakly
closed * algebra generated by the set of elements
of the group ring associated to the representation U,
and let Ry be the commutant of Ry . We know that
the center 3, = Ry N Ry is generated by the
operators F(A*®), where F(1) = (A 4+ §)~*. [The oper-
ator A* is unbounded so that we have to consider its
function F(A*) which is a bounded operator in
$(X).] The decomposition of the Hilbert space H(S)
into the direct integral (5.2) is so-called central
decomposition. We found that the Hilbert spaces H*
in (5.2) are generally reducible so that the central
decomposition does not lead generally to decomposi-
tion into the irreducible representations. We have to
add a certain number of discrete operators in order
to classify the irreducible representations. (Let us
recall that the ring of the invariant operators in the
enveloping algebra is generated by A*.) According to
Mautner’s theorem?? this means that the maximal
commuting subalgebra My of the commutant Ry
is generally generated by more operators than F(A*).
In particular cases we have the following situations:

(a) For SO(p,q), p2q>2: My, = {F(A*), P},
My o= {F(A*), P},and M, » = {F(A*), P}, where the
parity operator P is defined by (5.4).2

(b) For SO(p, 9),p 2 q = 2: My » = {F(A*), P, T},
where the operator T is defined in point (v) of Sec.
2D, Myg,» = {FA), P}, M, = (FA™), P},

(© For SO4p, 1), p>1: My, ={FA"),P},
My 1= {FA)}, M, = {FA*)}.

As the spectra of the operators P and T have only a
finite number of points, it is easy to find the Mautner
decomposition of the Hilbert space $(S) with respect
to the maximal commutative algebra My . The
decomposition for any particular case is written in
Sec. 2.

22 F. 1. Mautner, Ann. Math. 51, 1 (1950).

1091

In Ref. 1 we have given the maximal set of com-
muting operators 4 (7.8) for every irreducible repre-
sentation. These operators are unbounded and we
have to replace them by the bounded operators F(4),
F(}) = (A + $)*. The operators A of the set (7.8)!
are in the enveloping algebra and according to the
preceding discussion we have in general to complete
the operators F(4) with a certain number of discrete
operators in order to generate the maximal commuta-
tive algebra on H(X).

6. NUCLEAR SPECTRAL THEORY

The existence of the complete set of generalized
eigenfunctions for a self-adjoint operator on a
separable Hilbert space $ was first established by
Gel'fand and - Kostiuchenko.” They introduced a
nuclear space ¢, such that the Hilbert space § is the
completion of ¢ with respect to one of the norms in
¢ and the dual ¢’ of continuous functionals and they
considered the triplet ¢ < § < ¢’ which we call the
Gel'fand-Kostiuchenko?® triplet. Their theory can be
put in a very elegant form using Maurin’s construction
of the nuclear space ¢ for an arbitrary, strongly
commutative denumerable set of normal operators
Ay 81 Let us state now the nuclear spectral
theorem!®2*2% and then let us show how the results
derived in the present work may be a nice illustration
of this general theory.

Nuclear spectral theorem:

(1) Such a nuclear space ¢ exists that ¢ < § < ¢’ is
a Gel’fand-Kostiuchenko triplet.

(2) Each Ay maps ¢ continuously into ¢.

(3) There exist a direct integral .Sf) ={, 531 do(2) and
such a Hilbert isomorphism F:$ — 55 that for o—
almost all 2, S:')‘ < ¢, and $* are common generalized
eigenspaces of all Ay: (e*, A,p) = ff;}(e‘, @) identically

in g ¢, where {A%, A€ D} is the spectrum of A,.
@ R P B

Taking in each $* the orthonormal basis e}, n =1, 2,
.-+, dim $* we obtain the generalized Fourier—Plancherel

equation .
dim H4
(o, ¥) =L) > (eh> p)en, vy do(d), @, yed
n=1

(4) The isomorphism F is defined by $ > ¢> ¢ —
Fp := {(Fp)(4), A € D} = {¢*, A € D} € H*, where
dim ﬁl
¢h= 2 (e, p)e,.
n=1
(5) The spectral synthesis of p€¢ is given by
@ = [, ¢* do(}).
The nuclear space ¢ of the spectral theorem can be
obtained using Maurin’s construction.®%:23 According

23 K. Maurin, manuscript of the forthcoming book: Unitary
Representations of Non-Compact Groups and Associated Eigen-
function Expansions.
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to this construction as a nuclear space ¢, for the
operator A* (or the maximal commutative algebra
Mx of Rx) may be taken to be the linear manifold
D(X), which has been exploited so far very extensively,
furnished, of course, with certain nuclear topology
(for details see Ref. 19). The dual space D’ is the space
of the continuous functionals

2:D(X)3 S~ 7
= {x' (N Lm Lmex}edt (1)
It was proved in Sec. 4 that the set of functionals
(6.1) constitute a complete set of eigenfunctionals.
The direct integral, the Fourier transform F and the
spectral synthesis were explicitly written in Sec. 4 if
only the operator A® is considered. It is easy to
generalize the expressions of Sec. 4 for the maximal
commutative algebra.
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APPENDIX I

We prove in this appendix the density of D(X) in
$(X).Let ussuppose that someg € H(X), g 5~ 0, exists,
such that (f, g) x = Oforevery f € D(X). Weintroduce
the local coordinates, y,, k =1,2,--+,p + ¢, in the
Minkowski space M*? round the hyperboloids H?
and HZ by y* = px*, p > 0, where x* are biharmonic
coordinates! and round the cone C? by

yk=(r+P)xk,k= 1529.“’17’ yk=(V—P)xk»
k=p+1Lp+2,---,p+q p>0
r real. For the hyperboloid we define the function
h(p, 0) = exp (2p?cosh? § — 2 cosh? 8) for pe(}, })
and zero otherwise. The function v()?, y2, - - - ,y**9) =
(hg)(p, ) has the property

0 < Iolfpns = 1the)p, DI (o) dul@ < o,

where dv(p) = dy* - - - dy?*/du(Q)). As the set of

functions
u( yl’ y2’ s e

 YPR) = POy, e )

pta
X exp {— > (y")’*’},
k=1
where P(3, 32, - - -, y**9) is a polynomial, determine

a dense linear manifold in L2(M™9), such a function
u(y, ¥, yPt9) exists that (4, v),v.e 7% 0. But this

N. LIMIC, J. NIEDERLE, AND R. RACZKA

contradicts our assumption as

G Ol = [l [ @B, 03P,
X exp (—2p? cosh? 6)g(Q2) = 0.
An analogous proof holds for the cone.
The proof of the invariance of D(X) with respect to
X.;. The invariance follows from the equality

d
CahD = (35 = ' ) 0% %oy
o=
JfeD(X).
An analogous equality holds for B,;. Similarly, the
skew-symmetry of the operator X;, can be proved and

consequently the symmetry of A(H?) on D(X).

APPENDIX II. REVIEW OF MOST DEGENERATE
REPRESENTATIONS OF SO(p) GROUPS

(i) The Laplace-Beltrami operator A(S?1) defined
in (A6),! (A7) has only a discrete spectrum
SAS™): = lyyUgyysy + P — 2), lyyy = 0,1, 2, -

L =m,.

(i) The corresponding eigenfunctions in our

biharmonic system arel-2

l( /2}
Yo, "’;[n/z](w)

™ ) 1l 2k 9 A ar, (209
x TT exp (im,h), p = 2r,
k=1
= nlTgrit de+1 (19r+1)
1 Myi1,0

X H sin®* 9% dgf, 27, (29%) TT exp (im,¢"),
k=1

k__
p=2r+1,
(A1)
where  is the set of variables 92,---, 9W/2)
(pl’ cee ,p[m/z];ﬁk e [0, %w)k =2 -r, (p’e [0’ 277)’
I=1,---,r, 9" [0, 7], and theindices in (A1) are:

Jp= %(lk + k- 2),
M = 3(m + Ly + k — 2),
My =3m~L_,—k+2)
fork=23,---;
S = lr+l +r—1LM,= L+r—1, (A3)
I, are nonnegative integers, m, are integers. Here
Ly dyygys Il - oo, |mp,e| and ), = m, are re-
stricted by the conditions
|mo| + |my| = Iy — 2n,, [my| + 1,
=13_2n3,“"|mr| +l—l=lr_2nr’
nk = Q’ 1, * s {%Ik};
k=23---,r,
n’+1 e 0 ,re

(A2)

(A4)

lr = lr+1 — M

(A5)

’ lf+l‘

24 We use d function as defined in: M. E. Rose, Elementary
Theory of Angular Momentum (John Wiley & Sons, Inc., New York,
1961), p. 53.
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The normalization factors in (Al) are

r
1
N, =2z ———,
T ;Ez L+k—1
1 r 1
Ny = 4a" . (A6
i 2(1,+1+r)—1kH=21k+k—1 (A6)
(iii) The completeness relations?5:
[ TR i ) du)
{p/2} [2/2]
= H 6lklk' H 6mkmk' ’ (A7)
k=2 k=1
3V R )

= §w — ;) (A8)

where N’ is the set of values of indices L,, - - -, My
restricted by (A4) and (AS), and du(w) is the left
invariant measure on S?~! defined by

R The proof of the completeness of the set of harmonic functions
Yl’ '(”[/’) (w) in $(5*-1) in another coordinate system is given
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H cos *sin®* 2 9 d* T[] do*, o

i) = < p=an
21‘5-1 ,01‘4-1 dﬁf—f‘l H cos ,07:

X sin*-3 ﬁkdﬁ"n de*, p=2r+1,

k=1 (A9)

(iv) There is no need to go to the space of Fourier
transforms to define the unitary irreducible represen-
tations. Therefore, we consider the space H(SP).
The unitary irreducible representations are classified
by the number /iy, /15y = 0, 1,2,-- - and they are
defined by

50(p)> g — (U, Yo, 28 Nw)

= Y () € 9T,

where $*»/2)(S?-1) is the subspace of the space

H(S77) determined by the vectors Y w ‘%ﬂm(w)
with fixed [, .

(v) The decomposition of the quasi-regular repre-

sentation (2.2) into the irreducible ones is trivial as

S(s* = 3 @ §uni(se)

Hps2}=0
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A sunple recursion scheme is set up for the higher derivatives of functions of the form f(«, f)(x + f)?

and f(x, B
atomic integrals

. o + B + )~ and applied to the rapid calculation of the Calais-Lowdin two-particle

N various branches of theoretical physics integrals
occur which can be expressed in the general form
A fefh)
) 1
e d = (-5)(-5) a2 O
Application of Leibnitz’ theorem to the differentiation
with respect to both variables yields

Nm! (X + u)!
Fin=2 MAptp (o + gyt
a A
x ( aa) ( ﬂ) @ ),
A+ =1 p+p =m (2
The recurrence relation for the binomial coefficients
@+ _ (N
Alut ( A )

A’ + [ 1 2.' + [ 1
=" ©
A A—=1
* Permanent address: Department of Mathematics, University of
Salford, England.

can be applied to each term in the sum (2) except the

term with 4 = g = 0, with the result
1
L= [11“,_1,,,,,,, +mly s

+(- (-5 1] @

This recurrence formula can be used to particular
advantage in the evaluation of atomic two-electron
integrals for the case of exponential correlation

lm'n(“-a ﬂ Y)
—J:[ exp (—ar; — ﬂr2 - 7”12)"1 Try it dry drs,
)

where the integration is to be taken over all possible
positions r, and r, of the two electrons and r,, denotes
their separation. These integrals were discussed by

t Permanent address: Department of Theoretical Chemistry,
University of Warsaw, ul. Pasteura 1, Warsaw 22, Poland.
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Calais and Léwdin® and expressed as series expansions
on the basis of the relations
Lop = (4n)l(x + )= + VB + NI (6)
Line = (—0/00)(—0/0B)™(—0/07)"Tonn-  (7)
The same integrals had already been employed by
the writers in their treatment of the S states of helium-
like atoms and ions,® but they were evaluated
recursively by the method described in this note.
Application of (4) to (6) and (7) yields

i = (@ + O 1 mn + MU 1 n + Brminb
where ®
Buimin = (— a%)l(" 5%)m(— a—ay) (@ +$)7(T§+ )

®

The same relation (4) applied to the variables « and
y in (9) yields

Bl,m;n = (“ + y)"l[IBl—l.m;'n + nBl,m;n—l + Al;m.n]s
10
where
A _{_ 2 11 _ i m (4,”)2
s ( a)( aﬁ) ( ay) B+y
_@nrm )t

( ﬁ + y)m+n+1
Alternatively one can use the ratios

I‘imn = len/(“ m!in!), B{m;n = Bzm;n/(” mlin!) (12)
for which (8) becomes

D = (@ + A7 — 60 11
+ (1 - 6m0)Pl m~L,n B;m;n] (13)

and correspondingly for (10). Evaluation of a set of
such integrals with 0 < /, m, n < 12 on the Remington
Rand Univac Scientific 1103 A computer took
approximately 10sec, the time required for their
evaluation by the series expansion® had been esti-
mated to as many minutes. In addition, the terms on
the right-hand sides of (8), (10), and (13) are all
positive so that the maximum accuracy of rounded
numbers remains preserved.

Another set of integrals to which the relations (4)
can be usefully applied are the overlap integrals
between two spherically symmetric Slater-type orbitals
centered on two atoms 4 and B a distance R apart.>*

1 ). L. Calais and P. O. Léwdin, J. Mol. Spectry. 8, 203 (1962),
cf. also P. J. Roberts, J. Chem. Phys. 43, 3547 (1965).

? W. Kolos, C. C. J. Roothaan, and R. A. Sack, Rev. Mod. Phys.
32, 178, (1960).

3C. C. J. Roothaan, J. Chem. Phys. 24, 947 (1956).

4 K. Ruedenberg, K. O-Ohata, and D. G, Wilson, J. Math. Phys.
7, 539 (1966),

R. A. SACK, C. C. J. ROOTHAAN, AND W. KOLOS

The integrals
Lo, ) = [ exp (—ary — ra)rz'v ™ d's (1)

satisfy the relation (1) with

4y ¢ PB . gB
oo+ f aR — R

The recurrence relations resulting from the applica-
tion of (4) to (14) and (15) have already been derived
by one of the authors® by means of integration by
parts, but to obtain the result he made use of spheroi-
dal coordinates which are not required in the present
approach. The derivatives of the second factor in (15)
have recently been discussed in detail by Ruedenberg,
O-Ohata, and Wilson*; provided these are given
accurately, the relations (4) provide a stable process
for obtaining the I',,, for large / and m beginning with
the formula (15).

A number of generalizations of (4) follow stralght—
forwardly. Thus for

o= (BB
(16)

Lol B) = (1%

the formula becomes

lmn (“ + ﬁ + 7’) [IFI-I.m.n + mFl,m~1,n
a i _ E)m
aa) ( a8

x (- @) @ B, y)} 60

+ nly ey + (

and correspondingly for more variables. One or other
of the indices / or m may be negative, corresponding
to a repeated integration with regard to the relevant
variables; the recurrence relation (4) is still valid in
this case, but the intervention of the factor 0 prevents
any connection between expressions with a negative
index / and those with 7 > 0. However, if a few such
integrals are evaluated by other means, e.g., by
numerical quadrature, the remainder can be evaluated
from (4); but as the terms may now be of either sign,
care must be taken to avoid accumulation of roundoff
errors. Similar considerations apply to expressions
with fractional indices / and m.
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The invariance hypothesis is used to derive the various multivariate distributions of the reduced-width
amplitude. Simple expressions are given for the multi-level and multi-channel distributions valid for all

dimensions of the random orthogonal matrix, ~

I. INTRODUCTION

N an earlier paper’ we derived the asymptotic
reduced-width amplitude distributions using the
method of moments. This derivation has the advantage
that it does not use the weak assumption of level
independence.? It was shown that, in the limit of large
dimension of the random orthogonal matrix, the
distribution of the reduced-width amplitude is the
same as the one obtained using the level-independence
hypothesis.® In this paper we show that exact multi-
level and multi-channel distributions of the reduced-
width amplitude, valid for all dimensions of the
random orthogonal matrix, can be obtained.
From the earlier paper! we write the reduced-width
amplitude y,, for level A and channel ¢ as

N
Vie = Zaul‘]uc ’ (1)
=1

where a,; are the elements of N X N random orthog-
onal matrix and J,, are the overlap integrals of the
channel function and the wavefunctions of the basis
set, which is used for the expansion of the compound-
nucleus wavefunction.

The joint probability distribution P({a,;}) of the
elements of random orthogonal matrix is given by*®

P({aﬂ})iilda“ = K‘l[ﬁ 6(%(:?0_ - 1)]

A=1 =1

X [ ﬁ 0 (% au“u’)]uiildaul » (2)

A< \u=1l

where K is the normalization integral.

II. MULTI-LEVEL DISTRIBUTION

Let us consider a single channel ¢ and levels
A=1,2,---,n, where n < N. The joint probability

* N. Ullah, J. Math. Phys. 6, 1102 (1965).

2 F. 1. Dyson, J. Math. Phys. 3, 140 (1962).

3 T. J. Krieger and C. E. Porter, J. Math. Phys. 4, 1272 (1963).

4 N. Rosenweig, Phys. Letters 6, 123 (1963); International
Conference on Nuclear Physics with Reactor Neutrons, ANL 6797
(1963), p. 302.

8 N. Ullah, Nucl. Phys. 58, 65 (1964).

distribution P({y,,}), using (1) and (2), can be written
as

Plivs) = & [T 81 - éa,,ﬁ,,c)]
(g

A;l ;4;1 N
X [ H 5 ( z aulanx')] II daul . (3)
A< \p=1 1.4=1

Integrating over the column vectors A=n+1,---,
N, Eq. (3) gives :

P({yc}) = K—lf[f:[l 5(}’10 ‘"glau»’uc)]
()

A=1 u=1
7 N Nan
X [Hé(z au,.au;,)] 11 da,,, ®
i<d \p=1 p==1, =1
where the normalization integral X is now the integral
over n column vectors.
Let us make an orthogonal transformation on the
variables a,,

&)

N
# w—
Ayy = zlcma,.a s
“:——.

and choose
N —%
Clu‘:‘[m(zl‘]w) , =1, N. ®)
P

Since C is an orthogonal matrix, the scalar products
and the volume element remain invariant. Using this
transformation in expression (4) and carrying out the
integrations we get

P({7:.) = {L GN)/ TN — m} (NG

» $N—n—2)
x|t~ (27 / Nop) | @
A=1
where
=0l =1 3
[ Ae N = pe>

For n = N, we get
N
P({y,) = F(%N)(ww%»’*”a[i - ( S / N<yi>)].
®)
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Expressions (7), (8) give the exact multi-level single-
channel distribution of the reduced-width amplitude.
Earlier results*®# can be. obtained by expanding (7)
for large values of N.

HI. MULTI-CHANNEL DISTRIBUTION
We next consider a single level and m channels
(m < N), cl, c2,: -+, em. Using (1) and (2) the multi-
channel distribution P({y }) can be written as

P({Vc}) = Kulf[ﬁ a(?"c! —glau']uci)]
N N
X 6(gla§ - 1) Hdau, ®

where we dropped the level index 4, and K is again the
appropriate normalization integral.

By taking proper linear combinations of the
quantities J,,;

J;wi = ngiiJuci s (10)

we can construct J;ci which form m orthonormal
vectors in N-dimensional space. Expression (9) then
becomes

P(ird = & [[ 1T (e -—ug;au(T—‘),-kJ;ck)}
x a(élaﬁ - 1) I da,. (1)

#=1
As we had done in Sec. II, we make an orthogonal
transformation on the variables a, and now choose

(12)

Using this transformation and carrying out the inte-
grations in (11) we can write

7 —— * e .
Copu =, v=1, , M.

I'GN) |T]

3N — m)] tm -G, TT'}/)]%(N-m—g),

(13)

P({yc}) = r

NAZAKAT ULLAH

where |7'| is the determinant of the matrix T.
Introducing the covariance matrix® X

S = (f) = NIT), (14)
expression (13) becomes
I'3N)
P({y.p) =
@D = T~ i
1 1 HN—m—2}
x [1 -5 @579 (15)

For m = N we get

P({y.}) = ——5‘—%11%; 6[1 — 1z y)]. (16)

(N |2
For m > N, P({y,}) involves additional & functions.

This is because in an N-dimensional space we cannot
choose more than N linearly independent J, vectors.

1IV. MULTI-LEVEL, MULTI-CHANNEL
DISTRIBUTION

The joint probability distribution P({y,.}) for the
multi-level, multi-channel case is more difficult to
write down explicitly. We give an expression for the
case of two levels 4 = 1, 2 and two channels ¢l, c2.
It is given by

P(P1015 V102> V2015 Vac2)

_(N=WN -3, 1 » -
- [1 (00 E7 )+ 02,57 )

R Hov—s
+ (P1c1V2c2 — ViezVee)) } Y

1
N*|Z|

Similar expressions can also be derived for the case
of unitary and symplectic ensembles defined by Dyson.?

5 T. W. Anderson, An Introduction to Multivariate Statistical
Analysis (John Wiley & Sons, Inc., New York, 1958), Chap. IL
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The Wigner method of transforming quantum-mechanical operators into their phase-space analogs is
reviewed with applications to scattering theory, as well as to descriptions of the equilibrium and dynamical
states of many-particle systems. Inclusion of exchange effects is discussed.

I. INTRODUCTION

THE ensemble expectation value of a quantum-
mechanical operator 4 is expressed in the usual
formulation of quantum statistics, as the trace of pA4,
namely,

(4) = Tr pd, @)
where p is the von Neumann density matrix! defined by

p= ; w; |p(OX (D], )]

where w; is the probability that the system will be in
the state |$(r)). The density matrix satisfies the
equation
i(dp[0r) = Hp — pH, 3
where H is the Hamiltonian of the system under
consideration. In equilibrium, for a canonical en-
semble one has
p=ePE[Tr ¢ P, 4)
In calculating expectation values of physical
interest one may choose any convenient representation
in which to work. Wigner® in 1932 introduced a
method for evaluating expectation values which is
particularly suitable for “almost classical” systems
in that it expresses the expectation values as a power

* The portion of this work carried out at the University of
Michigan was supported by the U.S. Atomic Energy Commission.
Some of this material is based on portions of a thesis of one of the
authors (M. R.) presented to the University of Michigan in partial
fulfillment of the requirements for the Ph.D. degree.

t Present address: Conductron Corporation,
Michigan.

1 Present address: Plasma Physics Laboratory, Princeton, New
Jersey.

§ Present address: General Electric Company, TEMPO, Santa
Barbara, California.

|| On sabbatical leave, academic year 1964-1965 at Middle East
Technical University. Permanent address: Department of Nuclear
Engineering, The University of Michigan, Ann Arbor, Michigan.

1 J. von Neumann, Mathematical Foxndation of Quantum Mechan-
ics (Princeton University Press, Princeton, New Jersey, 1955).

* E. Wigner, Phys. Rev. 40, 749 (1932).

Ann Arbor,

series expansion with respect to Planck’s constant.
For such systems the expansion may be expected to
converge rapidly. Another important advantage of
this method is that there are direct classical analogs
of the quantities and operations used. In particular,
the analog of classical phase space is introduced into
quantum statistics. In this way the expectation values
of physical variables may be expressed in terms of
a phase-space integration. The purpose of the present
study is to review various fields of application of this
method.®

In Sec. I1, we demonstrate that the Wigner method
can be defined as a means for associating a c-number
function in phase space with every operator which is
a function of position and momentum operators.
This rule, in fact, is the inverse of Weyl's rule,
which is used to calculate quantum-mechanical
operators from classical quantities. However, it is
interesting to observe that there are various equiva-
lent ways of stating the association which are, in many
cases, simpler than Weyl’s rule. Various properties
and applications of this correspondence can be found
in Sec. III. Section IV is devoted to the application
to scattering theory. A method of inclusion of ex-
change effects in the previous results is given in Sec,
V, where the second quantized formalism is also
discussed.

Application to the equilibrium case (for Boltzmann
statistics) is given in Appendixes A and B, where the
equation of state is derived up to the order A4,

3 There are several papers published which deal with the Wigner
distribution function. Some of the basic references are: H. J.
Groenewold, Physica 12, 405 (1946); J. E. Moyal, Proc. Cambridge
Phil. Soc. 45, 99 (1949); J. H. Irving and R. W, Zwanzig, J. Chem.
Phys. 19, 1173 (1951); H. Mori, I. Oppenheim, and J. Ross, in
Studies in Statistical Mechanics, J. de Boer and G. E. Uhlenbeck,
Eds. (North-Holland Publishing Company, Amsterdam, 1962),
Vol. 1.
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I. WIGNER DISTRIBUTION FUNCTION

We restrict ourselves to Boltzmann statistics in
this section, so that exchange effects are ignored. Also,
we assume that the Hamiltonian of our system depends
only on the position and momentum operators R
and P4

Wigner? defines a distribution function f,(r, p) as
the Fourier transform of the off-diagonal elements of
the density matrix

Julrs B) = ey f dz exp (ip - z/F)

x r_fl
5 P

= Quhy™N J' dk exp (—ir - k/F)

<
X
2

r+ §> (5a)

p ‘ P+ ’5‘> (5b)

It is easily verified that f,, has the following properties:

j dpfulr, 1) = ¢l p I, (6a)
drf(r, p) = (pl p IP), (6b)

and, evidently
f dr dpfu(r,p) = Trp = 1. (60)

Corresponding to a quantum operator A(R, P),
we define a function A4,(r, p) by an equation analogous

to (5):
AT, p) =fdz exp (ip z/h)<r - g l Alr + §>
(7a)

=J'dkexp(—ir-k/h)< —fz‘lA’p + ’-2f>
(7b)

which we call the Wigner equivalent of 4. Thus we
see that f,, is simply (2#/4)~3" times the Wigner equiv-
alent of the density matrix p:

fu = QY. ®
Furthermore, from (5) and (7)
Tr pA = f dr dpAo(r, D)t D). ©

4 In our notation, r, p represent 3N-dimensional vector ¢ numbers
for position and momentum variables and R, P represent the corre-
sponding vector operators. A 3N-dimensional scalar product is
written as R.P or rp. Also, R;, P;: r;, Py, etc. denote ordinary
three-dimensional vectors associated with the /th particle.
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Equation (9) is the key result of the Wigner method,
since it expresses the ensemble average of an operator
A as a phase space integral.

The rules (5) or (7) for Wigner equivalent operators
are actually equivalent to Weyl’s rule® for defining
the classical analog of a quantum operator. This rule
may be stated most conveniently starting with the
Fourier transform of the classical function A4,(r, p):

(0, 7) = J' dr dp exp [—i(c - r 41 p)FAy(rs D).

(10a)
Then A(R, P) is defined from

AR, P) = (ﬁ)‘w

x f do drexp [i(o* R + 7 - P)/Alo(c, 7).

(10b)

That the Weyl rules (10) relating 4 and A, are

identical with the Wigner rules, (7) is shown below.

[Also, we show that Eqs. (10) “work both ways”.

Given A, one may determine A, and vice versa.]

There has apparently been some confusion in the

literature, in which one frequently finds the statement

that Eq. (9) holds with f,, defined through Eq. (5) and
A, through (10).

The equivalence of (7) and (10) may be proved as
follows. We begin by proving the completeness (and
orthogonality) of the operators exp [i(c - R + 7 P))/A
in the space of operators of the form 4 = A(R, P).
We first write
exp [i(o - R + 7 P)/h]

= exp [io - R/A] exp it - P/h] exp [io - 7/2K), (11)
by making use of the identity e4+B = e4¢BeilB:4]
(true if the commutator [B, A] commutes with both
A and B). Since exp (it * p/h) |r) = |[r — 7), we have
('l exp [Li(s - R + 7" P)/A] |r)

= exp [Lio-(r F PR —r £ 7), (12)
which implies that

Trexp [—i(o - R + 7 P)[h] = 2Q=h)*N8(0)d(r). (13)
Therefore
Trexp [—i(o’ - R + 7' - P)[H] exp [i(o* R + 7 P)/H]
= Trexp {—il(¢’ — o)R + (' — 7)P]/k}
1i
X exp I:— EE(TI 0 — ¢ -1-)], (14a)

= Qrh)*¥3(0’ — o)d(=' — 7). (14b)

® H. Weyl, The Theory of Groups and Quantum Mechanics (Dover
Publications, New York, 1950).
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[Equation (14a) was obtained trivially using the
identity below Eq. (11).]
We thus have proved that the operators

Quh)-*¥12 exp [i(o - R + 7 - p)JA]

are orthonormal. To prove completeness we attempt
to expand an arbitrary operator A(R, P) in terms of
these functions:

A(R,P) = f dodra(o,)exp [i(o - R + 7+ P)Al. (15)

If the expansion exists then the coefficient «(o, 7)
can be calculated by multiplying Eq. (15) by
exp [—i(o - R’ + 7 p')] and using Eq. (14):
a(o, 7) = Quh)y™Y

x Tr {A(R’, P'yexp [—i(o* R + 7- P)/h]}. (16)
To prove that the expansion (15) exists, i.e., to prove
completeness, we substitute from (10) into (15) and

prove that the result is an identity, say by taking
matrix elements in the position representation.

(r| A Ir'y = Quhy™Y J do dr dr" dr” (| A |r")

X (" exp [—i(c* R + - P)/B]|r"
X (rlexp[i{c R +1-PY/hlIr). (A7)

Making use of Eq. (13) and carrying out the trivial
integration, Eq. (17) is seen to reduce to the identity

(rlAlr') = (] A]r), (18)

which proves completeness (in the weak topological
sense at least).

This proof permits us to consider Egs. (10) to work
in either direction, i.e., given A(R, P), then A,(r, p)
can be found and vice versa. Thus there exists a one-
to-one correspondence between A(R,P) and the
c-number functions A,(r, p).

Finally, it is trivial to prove now that definitions
(7) and (10) are equivalent. It is only necessary to
substitute the expansion (10b) into (7a), use Eq. (12),
and carry out the trivial integration, whereupon the
Fourier inverse of (10a) is obtained.

In the next section we consider various properties
of the correspondence between A(R, P) and A4,(r, p).
In particular, we show a third rule for defining this
equivalence (Groenewold’s rule) which frequently is
simpler to apply than either Wigner’s or Weyl’s rules
[Egs. (7) and (10), respectively]. In summarizing the
results of the present section we have shown that
given any two operators A(R, P) and B(R, P) that

Tr AB = nh)y ™Y f dr dpA,(r, P)Bu(r, Py (19)
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where A4,, and B, are related to A and B through
Wigner’s rule (7) or equivalently Weyl’s rule (10). In
particular, the Wigner distribution function, f,(r, p)
is simply (27#)~*Np,, where p,, is the Wigner equiv-
alent of the density matrix,

III. WIGNER EQUIVALENT OF OPERATORS

From the results of the previous section, we
immediately deduce the following properties:

(a) if A = A(P) (i.e., independent of R),
then 4,, = A(p);
(b) if 4 = A(R), then A4, = A(@r);
(c) if 4 = const, then 4, = 4;
(@) Tr 4 = Quhy™ f dr dpA,(r, p);
(20)

@© f dpA(r, p) = Ry (r| A |ny;
® f drdy(r, ) = QmiYN (ol A Ip);
© @l Ay = Quhy™™ f dpexp[ip (r — r')/A]
x A + 1), p)
= Qahy ¥ f do exp [io - (r + 1')[2A]

X afo, r' — r);
where «(o, 7) is the Fourier transform of A4,(r, p) as
in Eq. (10b).

Wigner Equivalent of Preducts

Next we consider the Wigner equivalent of a product
of operators AB, and derive a formula which expresses
(AB),, in terms of 4,, and B,,. We have

(AB), = f dz exp (ip - z/R)(r — 32| AB |r + 32
(21a)
= f dz dr' exp (ip - z/K)

X {r— dz| A |r'Yr'| Br + 42), (21b)

or

(AB), = (2mh)y™N f dz dr' exp (ip - z/h)

x f do do’ exp [io - (r + 1 — 32)/2H]

X a(o, r' — r + }z)

X exp [io’ - (v’ + r + 42)/2h]

X flo’sr — v + §2). (22)
Here we have used Eq. (20g) for both 4 and B. Now,
making the change of variables

r=r —r+iz, 7T=r—r'+1iz
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we readily obtain
(AB), = Quh)y™*N | do do’ dr dv’

x exp [i(oc - r + = - p)/Ala(o, 7)

X exp [i{¢" 7 — o - 7)[2H)p(¢', )

x exp [i(c’ - r + ' - p)/A). 23
The factor exp [i(¢’ - 7 — o - 7'){2k] in the latter inte-

grand can be replaced by exp (hA/2i), where A is the
Poisson bracket operator, i.e.,

A=Y,V,-9,.9, 4)
so that A,AB, = (B,; 4,) is the standard classical
Poisson bracket. (The arrows on the 3N-dimensional
gradient operators indicate the direction in which they
operate.) We, therefore, obtain the formulas

(4B), = A,(r, p) exp (AA[20)B(r, p) (25a)
= B,(r, p) exp (—hAA[20)A(r, p) (25b)
= A {r — (B2ilV,, p + (A/2i)V,)B(r, ).

(25¢)

The above result is due to Groenewold,® which, by
successive application, along with (20a)—(20c) permits
one to calculate the Wigner equivalent of any operator.
This rule, then is equivalent to the two rules (Wigner’s
and Weyl’s) described in the previous section. In
particular, from Eq. (20d)

Tr AB = (2uhy™3 | drdpA (r, p)exp (AA[2i)B(r; p)

= Q@mhy f drdpd (r, DB D). (26)

To obtain the latter, we have performed 6N partial
integrations on the former, which flip the arrows
pointing to the left to the right, thus making A — 0.
This result thus agrees with Eq. (19).

We see that 4, is expressed as a power series in 4.
Similarly f,, is so expressed and, in particular, so are
thermal expectation values.

Wigner Equivalent of Heisenberg Operators
For A(r) = exp (itH/h)A(0) exp (—itHJk), one has

0A(0)[0t = (i/h(HA — AH). @n

Thus, upon forming the Wigner equivalent, we obtain
04, (D0t = (i/W)[H, exp (FA[2D)A,,

— A, exp (AA20H ]
= (i/W[H, exp (AA[2D)A,,

— H,exp(—#A[20)4,] (28a)

¢ H. J. Groenewold, Ref. 3; several properties of the Wigner
method have been first given in this work.
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or '
8A ()]0t = (2JW)H,, sin (AA/2)4,(). (28b)

Integration gives the formula

A (1) = exp [(2t/WH,, sin (AA[2)]A4,0). (29)

To lowest order in 7 this is simply the classical
equation of motion.

Quantum Liouville and Bloch Equations

The so-called quantum Liouville equation, which
determines the time evolution of the Wigner distribu-
tion function, can be deduced readily by forming the
Wigner equivalent of Eq. (3) with the aid of Eq. (8). By
similar manipulations used to obtain Eq. (28b), we
get

of ()]0t = —(2[WH,, sin (hA[2)[ @),

which can be solved formally as

fult) = exp [—(2t/B)H,, sin (AA[2)]1,(0). (31)
To the lowest order in /, the above equations reduce
to the classical Liouville equation:

af§lot = —H AfJ =>f3
= exp (—tH,A)f(0). (32)

Equation (30) may be solved in powers of 4? starting
from the classical distribution function. Such a
procedure has, in fact, been followed by Wigner?
and by Irving and Zwanzig.?

For a canonical ensemble in equilibrium, one has
[f. Eq. (4)],

(30)

pZ(f) = Q = ¥, (33)

where Q is the so-called unnormalized density matrix
and Z(p) is the partition function. Forming the Wigner
equivalent, we get

Qw = (e_ﬁH)w ’ (34)

which may be evaluated as a power series expansion
with respect to an appropriate parameter. However,
there is another way to handle this evaluation which
is suitable for almost-classical systems, and which
makes use of the equation?

0Q/0f = —HQ = —QH. 35
The Wigner equivalent of the latter is
0Q,/08 = —H, exp (hA[20)Q,,
= —Q exp (AA[2)H,,
= —H, exp (—hBA/2D)Q,, (36)
or
0Q,/08 = —H,, cos (AA[2)Q,,, (372)

? This approach has been used by I. Oppenheim and J. Ross,
Phys, Rev. 107, 28 (1957).
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with
QB=0=1 (37b)
Equation (37a) is known as the Bloch equation,
which provides a means for calculating Q,, (and thus
J) in powers of A2, which calculation may be found
in Appendix A. In this appendix, this method is
employed to deduce the #* correction in the equation
of state.

IV. APPLICATION TO SCATTERING THEORY

The differential scattering cross section (in first
Born approximation) for a system of interacting
particles can be written in the form®

926/0Q8e = CS(q, €), (38)

where C is a factor depending upon the momenta of
the incoming and outgoing particles and upon the
scattering potential for neutron scattering (which for
neutron scattering may be taken as the Fermi pseudo-
potential®). Also, € = Aiw and q = Ax are the energy
and momentum changes in the scattering event. It is
customary to express S(q, €) (called the “scattering
law”) in terms of Fourier transformed functions
x(q, t) and/or G(r, 1) as

S(q, &) = Qi) 'N f dt exp (—iet/Byy(a, 1) (392)

= RN f d&°r di

X exp [i(q-r — e)AG(r, £). (39b)
Thus y and G are related by

2@ D) = f Prexp(iq-DG@E ) (402)

or
G, 1) = (2mh) f d*q exp (—iq - P)x(q, ). (40b)

Explicitly x and G are related to the density fluctua-
tions of the scattering system:

1 y 3.,/ I
G(r, 1) = <§ 5,52=1 f &*r'é(r + R(0) — 1)
x 8(r — R,-(t))>, (412)
2@ ) = <§ 3 exp [—ig - R(O)/A]
i

X exp [iq- R;(f)/ﬁ1>, (41b)

8 L. Van Hove, Phys. Rev. 95, 249 (1954).
* E. Fermi, Ric. Sci. 7, 13 (1938); G. C. Summerfield, Ann, Phys.
(N.Y.) 26, 72 (1964).
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where R,(#) is the Heisenberg position operator
corresponding to the jth scattering center (out of the
total N).

For almost classical systems, it is desirable to
relate the cross section to the classical time-dependent
correlation function

Go(r, 1) = § S 00 + 10— £Ver  @2)

where ((r + ri(0) — r,(1))), denotes the classical
thermal average. (In this way, scattering data can
be used to give a physical picture of the scattering
system'® or alternatively, cross sections can be calcu-
lated from a knowledge of the classical mechanics of
the scattering system.)

Following the approach of Aamodt et al,'? we
consider from Eq. (41b)

%9, 1) = Tr p exp [—iq - R(0)/#]
x exp [iq - R(t)/h] (43a)
=fdp' dr'A(r', p)BLr', p's 1),

where, from the application of the Wigner rules
derived in the previous section, we have

ALr, p) = f(r, p) exp (BA[2i) exp (—iq - x, k)  (44a)
= exp (—iq - r;/h) exp (—1q - Vp)fu(r, p),

(43b)

(44b)
and
By(r, p, t) = exp [(2t/n)H, sin (hA[2)] exp (iq + x,/h),
(45a)

= exp {(t/m)p - ¥, — Qe/AO()
% sin (ff2)V, - V,} exp (iq - x,/h). (45b)
[In the last line we have used a special form for the

Hamiltonian, namely, H, = p*2m + ®(r).] Further,
we observe

1e. 1) = % 2 %9, 1)- (46)
(%)

Here we consider only the lowest-order contribu-
tions in A,'® so that f,, can be taken proportional to
e#Hv (cf. Appendix A). We then can write
A{r, p) = fo exp (—Pq*[8m)

X exp (Bq - py/2m) exp (—iq - /), (47)

10 B. N, Brockhouse in Proceedings of the Symposium on Inelastic
Scattering of Neutrons in Solids and Liquids (International Atomic
Energy Commission, Vienna, 1960).

1L R, Nossal, Phys. Rev. 135, A1579 (1964).

12 R, Aamodt, K. M. Case, M. Rosenbaum, and P. F. Zweifel,
Phys. Rev. 126, 1165 (1962).

13 Higher-order cofrections are studied in a paper by M.
Rosenbaum and P. F. Zweifel, Phys. Rev. 137, B271 (1965); Also
see M. Rosenbaum, Doctoral Thesis, University of Michigan (1964).
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where we have used the Taylor’s series property
exp (—a - Vp)f(p) = f(p — a).
To the same order
By(r, p, 1) = exp (tH,A) exp (ig - x,/h)  (492)
- =explig-r,0)/Al (49b)

Thus to lowest order

(48)

e ) = %z dp’ dr'f,, exp (—Ba¥/8m)

x exp (Bq - p;/2m) exp (—iq - r;/h)

x exp (iq - r,()/Al, (50)

and

G, ) = }—:7-(21;-)“1)‘3 d*q exp (—iq-1)

% exp (—pBq*/8m)exp (Bq - p,/2m)
X exp (—iq - r,/k) exp [ig - r,()/A]. (51)

Suppose, in Eq. (51), we replace r(0) + ip,(0)8h/2m
by r,(}ipk), which is correct to order /2. Then

G(r, ) = (2mh)y*N-1 f d°q exp (—ig - 1)

x exp (—pq’/8m)(exp [igq - r,(1)/h]
x exp [—iq-r,(3ifR)]) (52a)

= (2nh) N f &g exp (—iq - 1)

x exp (—pBq*/8m)(exp [—iq « r,(0)]
x exp [ig-r,(t — 3ipm]. (52b)

To obtain Eq. (52b) time-translational invariance has
been employed.

Referring now to (39b), we see, after some trivial
manipulations, that

S(q, €) = exp (Be¢/2) exp (—Pq*[8m)S (g, €), (53)

where S(q, ¢) isrelated to G 4(r, 7) through Eq. (39b).
This is the desired result (to lowest order in 4) since
it expresses the cross section in terms of the Fourier
transform of the classical time-dependent correlation
function. It is referred to as the “quasi-classical”
approximation.

The integration of Eqs. (52) can be carried out
explicitly, to give

1 2m\E

G, n = Z_\f.(-'r;&)
X g (exp {—@2m/BI*)[r + r0) — r(t — 3iBA)]}.
54
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Now let us consider the scattering law as - 0;
S(g, €) = ki)™ f dt exp (—iet/h)

X dp drA‘Bj . (55)
i

i,
Changing the dummy variable by ¢ = Ar, and utilizing
{44) and (45), we obtain
S(q; €) = exp (—pq’[8m) 3 | dp drf,
2,3
% exp (q - p,/2m) exp (—iq - v,/ k)
X (2n)? f dr exp (—ier)

x exp [iq - r,(rA)/A]. (56)
Assuming the limit #-— 0 can be taken before the
integrations, we can replace r,(vh) —r; + 7hp,/m to
get

(0, ) = exp (~fa’/Bm) exp (Be2) 3 f dp drf,
X exp [iq - (r; — 1,)/Alé(c — q-p,/m) (57a)
= % So(q, €)hzj fdrnN

x exp [iq - (r; — r)/A}, (57b)
where
8°g, €) = N(mp|2mg)* exp (—fq*[8m)
X exp (B¢/2) exp (—mBe?(2¢%) (58)
is the scattering law corresponding to the ideal gas,
and ny = [ dpf,,. It is noted that the “self-terms”,

i.e., i = j, give the ideal gas result. For the case of
binary central potential we obtain (with p = NJV)

S@ o) = Sq O 1 + p* f drny(r, 0)

X exp (iq -+ r/h)]

= S, 9|1+ p f dPrg(r) exp (iq - rm)} (59)

where n,(ry, * - -, r,) is the s-particle reduced distribu-
tion function in configuration space:

mts, 1) = [NYN = 9)1] f ny dryy - dry,
(60)
and g(r) = p~2n,(r, 0) is the usual radial distribution

function. In deriving (59), we have also used the
translational invarianCe property, viz., for any a,

ne, -, r)=nfr+a,---,r,+a) (61)

which follows from the homogeneity of the scattering
system.
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For an ideal gas ny = VV; n, = N(N — 1)V-2;
thus S(q, €) = S%gq, ¢) if one drops the contribution
of the “distinct terms” (i £ j) which corresponds to
the incident beam (q = 0, ¢ = 0) in the first Born
approximation 1213

The point here is that if the limit & — 0 is taken
before the ¢ (or 7) or (r, ¢) integrations are performed,
one gets a manifestly incorrect result, i.e., basically
the ideal gas result for any system. It is important to
go to the limit correctly, i.e., to use the “quasi-
classical” approximation.

Y. SOME CONSIDERATIONS FOR THE
INCLUSION OF EXCHANGE EFFECTS

In previous sections, we have assumed the
Boltzmann statistics to hold in the system at hand,
so that the exchange effects due to the symmetry of the
system have been ignored. We now outline a method
which enables one to modify the previous results to
include such effects.

For simplicity, we assume that the particles in the
system are all identical, so that the state vectors (for
example, in the coordinate representation) can be
written as

I = (N1t 3 0181 |Pr), (62)
P
where the summation is over all permutations P of
T, -, Iy, |P|is the parity of P, and 6 = 1 for bosons
and 6 = —1 for fermions.
The symmetrized (or antisymmetrized) Wigner
equivalent of an operator A is then written as

A%r, p) = f dz exp (ip - z[h)

) z ZO
X —=1A4 - N
<’ 2 r+2>/

=fdk exp (—ir « k/B)

¢ k k}/
X —=1A4 = N!. (63
<p 5 p+2 (63)

Our aim in this section is to express 4% in terms
of the previously defined quantity 4,,.

Let us associate with every P an operator U defined
as

Up |r) = [Pr). (64)

It is readily seen that Up is unitary, namely U} =
Up-, = Upl. Also, let

I = (1/N!)§ 6Py . (65)
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It can be verified that 7® is Hermitian, and also that

Upl® = 6P1I° = I°U,, (66a)
I°r=pe, (66b)
I°AI° = ASI® = I°45, (66¢)

where A5 = (1/N) X pUpAd. If A is symmetrical
(that is, UpA = A, for all P) then A5 = A4 (as is the
case for all observable operators). We thus drop the
superscript S.

In this notation, the matrix elements

%r| A |r"® = NU(r| I°AI° |1") (67a)
= NI{r| AI°|r"). (67b)
Therefore, from Eq. (63), we obtain, using (25a),

AT, p) = A(r, p) exp (RA[2DI(r, P),  (68)
where I9(r, p) is the symmetrized Wigner equivalent
of the identity operator [i.e., Eq. (63) for 4 = I}, or
it is the ordinary Wigner equivalent of 7°,

In order to calculate the expectation value of an
operator 4, we consider the definition

(A) = z wi (] A |-

Because of the symmetry of the system, the state
vectors in the position representation possess the
invariance property

(rl é) = 67l (Pr | ¢
= g!P! {r| Up |¢z>

(69)

(70a)
(70b)
for any P. Thus
Ay = (INDES S OIPHETS f dr dr'(Pr| ¢
PP i
X (¢ | P'PXr AR, (T1a)

(A) = (1/N1) f drdr | p |l APy, (T1b)

where we have used the definition (2). With Eq. (67),
we thus have
(4) = Tr pI°A, (72)

since p is symmetrical. Using our previous results,
we get

4y = f dr dpf'r, AT, D), (73)
where

15 = @Ay o (r, p) exp (FAP2DIYr, p)  (T42)

= @iy I Py cos B g ). (74D)

In the last step we have used the relation 1% = pI®,
Alternatively we can write

4y = f dr dpf(r, DAY, D). (75)
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We thus have reduced the calculation of the ex-
change effects to the evaluation of the quantity

=3 61P|fdz exp (ip - z/h)
P
X &(r — Pr — }z — }Pz) (76a)
= 30" f dk exp (—ik - r[h)

x &(p — Pp — 3k — 3Pk). (76b)

Let us note that I? is an even function with respect
to both r and p. This can be seen by using the property
&(r — Pr'’) = 8(r' — P7'r) and changing the dummy
variables z — —z, P — P~1in (76a). This manipulation
shows that the factor exp (ip - z/h) in the integrand
can be replaced by cos p - z/A (therefore I? is real).
Similar manipulations on (76b) yield the symmetry
property with respect to r.

Secondly, we observe that the term in Egs. (76)
corresponding to the identity permutation is 1, which
corresponds in turn to Boltzmann statistics. [The
factor N! is to be replaced by (1) = 1 in the latter
statistics, since all particles are distinct.] The evalua-
tion of I® as a power series in /i is not appropriate
because of the essential singularity at # = 0. One can
reduce this evaluation to the calculation of the con-
tributions of cyclic permutations.

Second Quantized Approach'

An alternative way to handle the problem of
inclusion of the exchange effects is to utilize the second
quantized formalism. The (anti)symmetrized position
ket vectors can be written as

Il = (N ') v'Ew [0),
where y(r) and its Hermitian conjugate '(r) are the
annihilation and creation operators which satisfy the
usual (anti)commutation relations corresponding to
(fermions) bosons. The matrix elements

NG

5| A |rP
= (0] P(riyar) - Wrh-DAP () - 9'(x) [0) (782)
=Trdy'(r) - v (en)w(rs) - - - vir), (78b)

where we have used the fact that the total number of
particles, N, in the system is constant. Substituting
in Eq. (73), and utilizing (20g) we obtain

() = f dr dpfo(r, p, DAL P, (19)

where
fo(r, p, £) = QuAy (N [dz exp (ip - z/h)

t t
X Trp(t)y (1, + 32)) - v (0y + $2y)
X 9ty — dzy) - - pln — d2y), (80)
14 For a general review, see W. E. Brittin and W. R. Chappell,
Rev. Mod. Phys. 34, 620 (1962); also R. Balescu, Statistical Mechan-

ics of Charged Particles (Interscience Publishers, Inc., New York,
1963), Part II.

an.
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which represents the Wigner distribution function in
the second quantized formalism.

Equation (80) can also be written in the Heisenberg
picture

o(r, p, £) = (N)Y'2nh)y N | dz exp (ip - z/h)

x Tr pOT'(r + 32z, DT — 32, 1), (81)

where
F(I', t) = 'p(rN! t) e '/’(1'1, t)' (82)
Let us assume, for simplicity, that
H, = p’[2m + O(r), (83a)
D(r) =i§’ (ry — r)). (83b)

(We also assume that the interaction potential is real.)
One then has

ihdy(r, 1)[0t =

where

—(R2m)Vi(x, ) + $E)p(r, 1), (84)

(85)
2V
—(K*[2m)VIT(r, ) + O(L(r, 1)

+ gf(r,)r(r, DOV, (86)

30 = [ gt — W @)
Thus, I'(r, t) obeys the equation (with V? =
ihol(r, t)/0t =

where we have successively used the (anti)}commutator
relation

[v(), 367 = P — 1). (87)
The last term in the right-hand side of Eq. (86) vanishes
identically since there is no (N + 1)-particle state.
One readily finds

il % 'r + iz, OTG — 3z, 1)

= [A%2mV, - V, — 20(r) sinh 3V, - z]
x I f,z)r( —E,t). 88
(r+Zgr(r=~2.1) @9
Equation (88) enables one to calculate the time rate
of change of f9 to obtain

(G +7r v -Foomis.s,)

X fulr,p, ) =0, (89)
which is nothing but the quantum Liouville equation
[cf. Eq. (30)].

In kinetic theory, one introduces the reduced
distribution functions by integrating f2 with respect
to all state variables r, p but those belonging to one,
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two, etc., particles. Let us define with i £ (r;, p,),

N!
(N — s)!

x f Prop - drydapy - donfls

S50 =

where we have used the ‘“‘generic” normalization.
By integrating Eq. (89) one obtains the quantum
BBGKY hierarchy:

(2+lp.vf_2
m h

i<ji<s

2 8
xfill, s =2 3 J' &ry iy 0y bt — Tors)

x sin 3AV, V)00, - s + 1;1). (90)

The right-hand side of Eq. (90) stems from the
contribution of the last term in Eq. (86) which does
not vanish when s < N.

Equation (90) [rather the first one (or two) of the
chain] has been studied for various systems in which
the radiation field, photon field, spin and relativistic
effects are included.’® For further details, the reader
is referred to Ref. 15.°
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APPENDIX A
Solution of Bloch Equation

Although Eqgs. (37) can be formally solved to
obtain

Q, = exp (—pH, cos hA[2), (Al)

the evaluation of this result is somewhat lengthy.
Instead, here, for simplicity, we restrict ourselves to
the case for which

H, = p*2m + 0(), (A2)

where ®(r) is the interaction potential which is usually
assumed to be pairwise additive; i.c.,

O(r) =‘§!¢(lr‘ — 1)

1 R K. Osborn and E. H. Klevans, Ann. Phys. (N.Y.) 15, 105
(1961); E. Ozizmir, Doctoral thesis, University of Michigan (1962);
R. K. Osborn, Phys. Rev. 130, 2142 (1963).

(A3)
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The Bloch equation for this case can be written as
34/0B = (R}{8m)ePPViePoy 4 pebv'/am
x (1 — cos 34V, -V )e /2™ (A4)
where we have set
1=e5Q,. (AS5)

The first term in the right-hand side of (4) can be
written as

(R*[8m)[V} — 2pY,¢ -V, — V¢ + BY(V,$)"Ix.
We also have
exp (Bp*2m) cos (4)Y, - V, exp (—fp*[2m)
= exp (Bp*/2m) Re exp (}iAV, - V,) exp (—Bp*/2m)
= exp (6p*/2m) Re exp [—A(p + 3iAV,)/2m]
X exp (&ihlV-, . i)
= exp (BH2V/8m) Re exp (—iphV, - p[2m)
x exp (iAV, - V,[2). (A6)
Hence, one obtains, with y(f =0) =1,
3/08 = (R8m)[Vy — 28Y,¢ - V,y
— B(Vid)x + BV 0] + $x
— [exp (A*8V28m)¢][cos (ipf2m)¥,
- pcos (3A)V, - V, + sin (AB/2m)V,
- psin GAY, - V,]x. (A7)
This equation can be solved by expanding y in

powers of A% To the lowest order, y, =1, which
corresponds to the classical case. To first order, one

gets
2= @m) -V + 15%p - V)], (A8)

which was first derived by Wigner.2 The second-order
contribution can also be carried out although the
calculation is somewhat lengthy. The result is
X2 = (8%/64m*){— V¢ + BIAVA(V4)*

+ (1/3m)(p - V)*V2$ + 1V - V(Vig) + 1(V2¢)*]

— PV - V(Ve)® + (2/15m)Vé - V(p - V)

+ H(VEENVE) + (13m)(Vig)(p - V)*¢

+ @/15m)(V(p - V) + #5(p - V)'¢]

+ BV + (1/9m)(Ve)Hp - V)*d

+ (1/6m™)(p - V)*4)’]}. (A9)

In order to calculate the partition function Z
we consider the relation

f dp drQ, = ZQ2mky*N (A10)
or

Z = Quhy ¥)c;
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one obtains

Z=2ZJl +kC+rC+--"], (AlD

where Z, is the classical partition function. One has

Cy = (1/8m)[—p*(V3b)o + 3(VE)*)e
+ $%(Vi)ol

= —(f224m)(V2$). (A12)

and

Ci= (ﬂ’/4m’)[ (Ve — —”— (T8

288

- 1—2(—)<V¢ V(Vé))c +3 £ ((V e

+ ﬁ - (V6 - V(o

/3
T 180

B B .
-144 [ %0 + & <V(V¢)>C

L 4
2o Vel

Vi(V)yo — — (V‘¢>c],

(A13)

The evaluation of C, has been carried out by
Goldberger and Adams?® using field theoretic methods.
Our result, however, differs by a factor of § from
theirs in the middle term of the last equation.

The unsatisfactory part of the above analysis is
that these coefficients blow up the limit N — oo. This
can be seen by writing

(Vi) = Npt f Ernl(r, OV, (Al

where n(ry, r;) = n{(r; — 1y, 0) is the classical re-
duced distribution function in configuration space
defined as in Eq. (60), and p = N/V (= finite). This
difficulty was first observed by Mayer and Band.!”

In order to remedy this difficulty, one can use the
well-known property that the free energy per particle
F|N is a finite quantity in this limit, as was shown by
Kahn and Uhlenbeck!® in general terms. In other
words, Z1/N remains finite as N — oo [cf. (A15)]. This
can be observed to be true for the case of the harmonic
oscillator; cf. Eq. (B10). Green'® demonstrated that if
one expands F/N, instead of Z, to which it is related
through the relation

Z = ¢ *F, (A15)

16 M. L. Goldberger and E. N. Adams, I, J. Chem. Phys. 20,
240 (1952).
17 3. E. Mayer and W. Band, J. Chem. Phys. 15, 141 (1947).

18 B. Kahn and G. E. Uhlenbeck, Physica 5, 399 (1938).
1% H. 8. Green, J. Chem. Phys. 19, 955 (1951).

IMRE, OZIZMIR, ROSENBAUM, AND ZWEIFEL

then the contribution to order A% remains finite as
N — oo. We now show that this is also the case for
the term of order A%,

To do this, we consider

ZIZHN = (1 + B*C, + K*C, +
=1+ F(1/N)C; + K[(1/N)C,
+ (12N)Y1/N — D)C]] + O(K°). (A16)
We have already seen that

(A/N)C, = —(B%[24mp) f Prag(r, OV, (A1)

. .)1/ N

which is bounded as N — co, where r = |r| (not to
be confused with 3N-dimensional vector r).

We can write from (A13) (by making use of a
vector identity and an integration by parts)

(1/N)C, = (8%/1152m*N)
x [ﬂ«vw)% + 355 -V, — <V‘¢>c]-

(A18)
It is readily seen that

§<V‘¢>C = ZP f Prol(r, Vi) (A19)

and

§<¢»(\7-V)>c=Z f g (r, OV, - Vrd(r)]
P

+1 f &r Brn(, v, O3V, - VM0 (A20)
P

Therefore these quantities are both finite. Finally, we
calculate

~ (Vo = f f Prag(r, VI
+4 f &r Prnl(r, v, OVH(rIVI(r)
P

+ 1 f &r &r' @r'nl(r, v + ", 1", \ViS(H)Vi(r').
P
(A21)

The last term in this equation contains a part
which is proportional to N. This part, in fact, com-
pensates the term —(1/2N)C? which also blows up
as N — oo,

To see this, we introduce the cluster development??

0 T, R. Hill, Sratistical Mechanics (McGraw-Hill Book Company,
Inc., New York, 1956).
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as (by dropping the superscript C)
m=p=0,
n(ry, ¥y) = Gylry, T2) + p2,
ng(ry, Yo, Xg) = Gy(Iy, Xy, Tp) + p[Gy(ry, 1)

+ cyclic terms] + p3, (A22)

etc., where G, is the s-particle correlation function
which vanishes as |r| — co. The last term in the right-
hand side of (A21) becomes, after some manipulations,

= }_ fdsr dsr/ dsr"G4(l', l" + rl/’ l'”, 0)V2¢(r)V2¢(r’)
p

+ 2 f &r &' &Pr'Gyx — ' — 1", 0)
P

X Gyr", O)Vng(r)Vng(r')

+ ‘—;[ f Prale, 0)V2¢(r)]

The last term is the contribution of the part of the
double-pair correlations which divides ny(r,r’ + r”,
Y +r,1",0)as

G2(r’ 0)G2(r' + l'”, l'”) = Gz(’, O)Gz(”, 0)'

This term blows up linearly with N. When (A23)
is substituted in (Al6) one finds that this term
cancels the term CZ/2N; therefore the coefficient of
A* remains finite.

The free energy, F, can then be written as

(A23)

F=Fqc—(N/f)n (Z/ZC)IIN
= Fo — (F[B)C, — (4[B)

x [(C; — $C) — (1/N)CT] + O(K®), (A24)

a result which may be used to calculate the quantum

corrections to the equation of state.
To do this, we consider the definition of pressure?®

p = —0F[oV
o_Facy _# 3
pov pov

x [ —1ch -y ci] +ou, 29
where pC is the classical pressure which is to be
calculated from the classical equation of state.

To evaluate the volume differentiations, one can
consider the spatial integrations to be carried out in a
box of length ¥}. By changing the dummy variable
r = xV}, so that the volume of integration becomes
unity, the differentiation can be performed on the
integrand.?® In general, one has, for an integrable
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function A(xy,- - -, r,, V),
V'iV jd”rl e dar,h(rla RS P9 V)
= (S _— l)fdsrl tee dsrah(l']_, e, l'., V)
+fd3r1---d3r,V—§- h(rys 1., V)
oV
+ %fdsﬁ cee dsrs an ;- h(ry, -, 1, V).
=1
(A26)

The last term vanishes if & vanishes sufficiently rapidly
for large |ry|.

Here for simplicity, we consider dilute systems;
that is we ignore correlations involving more than
two particles. We thus obtain

p =%+ WA, + 4, + O(K), (A25a)

where

= (B¢*/24m) f &re(IVie(r)
4= —(ﬁzp2/1152m2){2ﬂ f Fre(r\Vid)
+ 4fp f &r Prg( — FIVIHAVIE)
+ 68p° f &r P drg(r — v — 1))
X gV HIVHr) + 4B f Pre)dV - V4]
+ e f &r Prglr — v, - Vorder)]

— 48 f Pre(NVi¢ — 4p[ J d"rg(r)qus] 2}- (A27)

Here g(r) is the radial distribution function defined as
pg(r) = ny(r, 0). (We have also dropped the contri-
bution of the volume differentiation of correlations,
which may be small for dilute systems.)

Our result, to the order A% coincides with those
given by Uhlenbeck and Beth?! and also by Green'?
if one further assumes that

g(r) = exp [—Bé(n)},

a relation which is valid in the low-density limit.20
In the latter case, it is possible to simplify further the
quantities in (A27).

21 G, E. Uhlenbeck and E. Beth, Physica 3, 729 (1936); 4, 915
(1937). For an excellent review of this subject, see J. de Boer, Rept.
Progr. Phys. 12, 305 (1949).
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APPENDIX B
Harmonic Oscillator

For the harmonic oscillator, which is characterized
by the Hamiltonian

H, = p*2m + tmow?r?, (B1)
the Bloch equation (37) reduces to

90,/0p = —H,Q, + (i*/8m)
x [V2 + m*e®V2]Q,,. (B2)

We seek a solution of (B2) of the form

Qw = €xp [_A(ﬂ)Hw + -B(.B)]’ (B3)
which yields the following equation:
—(dA[dp)H,, + (dB/df)

= —H, — (}Hw?4d + 3} wH,. (B4)

Since the only (r, p) dependence in (B4) occurs in
H,, its coefficient must vanish separately. Thus, we
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obtain
A = (2/hw) tanh kwp/2, (BS)

B = —In cosh fiwf/2, (B6)
where the initial condition Q(8 = 0) = 1 has been
used.

The partition function can now be calculated by
using Eq. (A10), which yields

Z = (1/hwA)*N[1/cosh (hwpf[2)], (B7)
and, therefore
fo = (120R*M(3Q,)
= (wA[2m)*Ne~ 4P Ho, (BS)

Let us note that the free energy per particle is
bounded as N — oo, since

(FIN) = —(1/B) In 2™
= (1/B) In (hwA)[cosh (3hwp)VY  (BY)
as was pointed out in Appendix A. One obtains

im (FIN) = (1/8)In [2 tanh (}Awf)]. (B10)
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Symmetries of the Bethe-Salpeter Equation for Relativistic Bound-State Problem
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Possible dynamical symmetries of the Bethe-Salpeter equation in the ladder approximation for the
bound state of two neutral scalar mesons interacting via a massless scalar boson have been investigated.
It is shown that the Bethe—Salpeter equation exhibits an O(5) or O(4) symmetry according as E, the total
energy of the system, is zero or nonvanishing and the corresponding no-invariance group being O(S, 1)
when E = 0 and the O(5, 1) spectrum splits into > @ O(4, 1) when E 5 0 as pointed out by Salam et al.
The method employed here differs from that of Cutkosky and of Salam et al.

1. INTRODUCTION

ECENTLY interest! in the study of the relativistic
bound-state problem using the Bethe-Salpeter
equation? has been revived in connection with the
dynamical origin of higher symmetries. Such con-
siderations have been thoroughly discussed® with
respect to the nonrelativistic Schrédinger equation
for the hydrogen atom problem and in the strong
coupling limit of the static meson field theory.* The
existence of an O(4) symmetry for the hydrogen atom
problem is well known.’ In this note we consider the
relativistic bound state problem in the Bethe-Salpeter
(B-S) equation. In its simplest form we consider the
equation for two neutral scalar mesons of equal mass
m interacting via a massless scalar boson; the inter-
action Hamiltonian being of the form g{¢(x)1*4(x),
where g is the interaction strength, ¢ the meson
of mass m, and A(x) is the massless scalar field.
Only the ladder diagrams are kept as usual. Applying
a stereographic projection to the five-dimensionai
pseudosphere it was pointed out by Cutkosky® and
later by Salam et al.! that the B-S equation for such
an interacting system possesses an O(5) symmetry
when the total energy of the system is zero and an
O(4) symmetry for nonzero total energy. The purpose
of this note is to obtain the same result by noting that
the B-S equation can be separated in a suitable system
of coordinates.” This immediately leads to the required
* Permanent address: Centre for Advanced Study in Physics, De-
partment of Physics, Delhi University, Delhi, India.

1 R. Delbourge, Abdus Salam, and J. Strathedre, ICTP preprint
No. IC/66/60; A. O. Barut, P. Budini, and C. Fronsdal, ICTP pre-
print No. 1C/65/34.

% E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951). For
solutions, see G. C. Wick, ibid. 96, 1124 (1954); R. E. Cutkosky, ibid.
96, 1135 (1954); J. S. Goldstein, ibid. 91, 1516 (1953); H. S. Green,
ibid. 97, 540 (1955); S. Okubo and A. Feldman, ibid. 117, 279 (1960).

3 N. Mukanda, L. O’Raifeartaigh, and E. C. G. Sudarshan, Phys.
Rev. Letters 15, 1041 (1965). Barut, Budini, Fronsdal (see Ref. 1).

4 T. Cook, C. J. Goebel, and B. Sakita, Phys. Rev. Letters 15, 35
(1965).

8 V. Fock, Z. Physik, 98, 145 (1935).

¢ See Ref. 2.

7H, S. Green, Nuovo Cimento 5, 580 (1957); Author’s Ph.D.
thesis, Adelaide University (1957); S. N. Biswas, ibid. 8, 540 (1958).

degeneracy of the energy spectrum consistent with
O(5) and O(4) symmetry of the relativistic B-S
equation for zero and nonzero total energy, respec-
tively.

2. ENERGY SPECTRUM AND SYMMETRIES
OF THE B-S EQUATION
The B-S wavefunction, X(x, y) for the two-body
scalar problem is given by
X(x, y) = O] T($(x)$(y) k),
where k denotes half the total four-momentum of the
system. We write the wavefunction as the product of

two terms describing the center-of-mass motion and
relative motion of the two particles, namely,

X(xs }’) = eik(z+v)¢(x - y)’

where ¢ is the wavefunction in relative coordinates.
The B-S equation in momentum space and in the
ladder approximation is given by

{(pa + EY +p* + m?%}
x {(ps — E)* + p* + m*}(p) = v(p),

Wp) = 7% f @ ~ O°Ha) d'e, (1)

where ¢(p) is the Fourier transform of ¢(x — y). In
obtaining Eq. (1) we have performed the Wick
rotation in the relative time variable, i.e., we have
replaced p, by p, = ipy, and further specialized to the
rest frame and used k = (0, iE). A denotes the inter-
action strength (A = g%/8=2). :

Using the fact® that
1 ¥ * o 1 ¥
o (36
\p—4q/ \opi W/\p—g
= —4n’'(p — q)
we obtain from (1) the following differential equation:

(8*/0p; + 2*/3p")yp(p) = —424(p). )
8 H. S. Green, Phys. Rev. 97, 540 (1955).
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This differential equation is equivalent to the integral
equation (1) provided p2y(p) is finite at large p and
also y(p) is finite at small p.

We now use the following set of transformation
variables: p, = p, sin 0 cos ¢, p, = p,sin 0 sin ¢, pg =
p,cos 0, p, = w sin Bf(cosh & — cos §); p, = w sinh &/
(cosh & — cos ). The whole energy-momentum plane
is contained in the ranges 0 < 60 < 7,0 < ¢ < 2,
and —ow < & < fand w? = E? + m?, In this coordi-
nate system we write

py = f(O)2(BY(O, ¢),

where Y"(0, ¢) are the usual spherical harmonics.
The differential equation (2) becomes

@, & I+ 1)}@8@

{a_si YT sp
= A

(psy)
E?sinh® & — w®cosh? &
Separating the variables of the equation we have
(d%/dp*) + {n* — [I( + D)fsin® flg} = O

3

@
and
(@*ldE>) — {n* — [A/(w? cosh® & — E%sinh® )} f = 0.
®)
The boundedness conditions on g(f) and f(§) in the
new coordinates are obtained by substituting them in
the integral equation which is satisfied if g(0) = g(=)
and f(£) to vanish at large & and fis an even function
of & Further f and g must be finite within the given

ranges.
The solution of Eq. (4) is

g(B) = const x sin**'p(9/d cos p)*
x [sin (n8 + 6)/sin f].

As g must be finite at § = 0 then 6 must vanish, the
requirement g(0) = g(=) demands that » must be an
integer. Since g £ 0 we must have n >/ + 1. This
solution can be written conveniently in terms of
Gegenbauer polynomials,

g(B) = const x sin*** BCLL_ (cos ). (6

The differential equation (5) for f(£) determines
the energy eigenvalues of the bound state. Here, as
was mentioned at the beginning, we consider the case
when total energy E = 0. The equation can then be
solved exactly. Putting

Ajm* = N(N + 1),
where N is an integer, Eq. (5) reduces to

&dE = {n® — [N(N + Dfcosh? £} f. (D)

S. N. BISWAS

To solve Eq. (8) we put tanh & = cos y; yx then varies
from O to 7 as & — oo to — 0. The solution satisfying
the boundedness condition can be put as

~ fn N+ !
f=( )n!(N—n)!
Xn—=NN+n+1n+1sn*@Gpl ®

which are the usual Gegenbauer polynomials

sin” y, Fy

®

This is the same solution as given by Cutkosky
(Appendix A of Ref. 2) and Okubo and Feldman®
for the S-wave case when we put # = 1 in our solution
(9). Here again for fy(, #0weget N>n>1+1,
I > |m]. The energy eigenfunctions fy,, have then the
degeneracy 3N(N + 1)(2N + 1). We now combine
the solutions for f(y), g(#) and defining a new wave-
function ® through!®

® = (1 — cos B sin x)3¢,

where ¢ is the wavefunction occurring in (1) we
obtain the eigenfunctions ®,’s corresponding to the
eigenvalue 4, = N(N 4 1) to be

Fim = const X (—)"sin® yC2% (cos ).

(10)

(I)N ~ YNﬂlm

apart from a constant.
The Yy,;, are the spherical harmonics in the
5-dim Euclidean space and are given by

Yyaim = (sin £)" "4 (cos 1) sin’ BCL5, y(cos B)

x sin™ §Cythcos B)e™s, (11)
with N > n > 1+ 1, 1> |m| and the degeneracy of
Yxnim 18 §N(N + D(2N + 1). Hence the number of
independent @,’s is 3N(N + 1)(2N + 1) which corre-
spond to the component of the fully symmetric
irreducible traceless tensors of the O(5) group. We
note down here in particular those generators of the
group which will change / by one unit keeping » fixed
and change » by one unit keeping N fixed. We have

Nfgum = [0/0 — (I + 1) cot Blgnwy = &nirrny»

Nz-gn(i—;l) = [a/aﬁ + (I + 1) cot Blguain

= (n -1 — 1)(" + 1 + 1)gn(l)’
and

N v = (0f0y — neot P fyimy = 2n + 1) fyimsn »
Nofutny = [a/ax + (n + 1) cot x1fyinta)
= [(N — )N + n + 1)/2n + D]fym -

® See Ref. 2.
10 This definition of the new function corresponds to that intro-
duced by Salam et al. [See Ref. 1; Eq. (4).]
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If in addition one puts the infinite B-S energy
levels characterized by 4, - - * 4, in a single irreducible
representation of a noncompact group, then the
resulting group is O(5, 1) having O(5) as the maximum
compact subgroup. O(5,1) is then the so-called
noninvariance!! group of the B-S equation.

3. OTHER REMARKS

In the case when E # 0, the differential equation
(5) cannot be solved exactly at special limits. It is
interesting to note that our Eq. (5) is equivalent to
Eq. (15) of Ref. 1 (see Salam er al.) if we make the
following substitution. Putting f(£) = (sech £)". G(&)
and finally writing z = tanh £ we find the equation
for G as follows:

d’G dG

1—2)— +2(n — 1)z—

(I—2)at+2n—Dz—
(A/m®)

+ —

{(1 — & + €229

where € is the rest mass of the bound system in units

of m. This equation (12) has been studied by Salam
et al.l and earlier by Cutkosky.2 We have then obtained

- n{n — 1)}G =0, (12)

11 See N. Mukunda et al., Ref. 3, and Salam et al., Ref. 1.
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the final equation for symmetry studies in a much
simplified manner without using the generalized
stereographic projection method of Fock® as utilized
by Salam et al! and previously by Cutkosky.? How-
ever, following the same argument as that of Salam
et al.* one then finds that the symmetry group of the
B-S equation in this nonvanishing energy limit is
0O(4) and the E=0, O(5,1) spectrum splits into
> ®(0(4, 1)) spectrum when E 5 0, as in this case
the energy levels are characterized by an extra quantum
number denoting the number of zeros of the solu-
tion G,
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Hepp’s recent proof that the Bogoliubov—Parasiuk renormalization prescription leads to finite integrals
after the employed space-time regularization of the Green’s function is removed is extended to a case

in which only spacelike regularization is used.

1. INTRODUCTION

RENORMALIZATION prescription for rela-

tivistic perturbation theory has been proposed

by Bogoliubov and Shirkov! which avoids contour

rotation difficulties by introducing the “a representa-
tion,”

A;(k) — lPl(k) = Pl(k)f daez‘a(kz—m;2+i€)’

: k* — m} + ie 0

(1.1)
for the propagators. Here Py(k) is a spin matrix which
is a polynomial in k and m; > 0 is always assumed.
The rigorous exposition of the Bogoliubov prescrip-
tion, however, as put forth by Bogoliubov and
Parasiuk,? is unfortunately rather vague. Their proofs,
furthermore, are incomplete or incorrect in part.
These defects have recently been removed by Hepp,?
who has presented a more precise exposition of the
Bogoliubov prescription and has completed and
corrected the Bogoliubov-Parasiuk proofs. We refer
to the resulting theory as the BPH theory.

Let us consider an arbitrary ath-order Feynman
diagram G = G(V,,- -+, V,, L) connecting the ver-
tices Vy,---,V, with the lines £ = {/,---/;}. In
x space, G corresponds to a regularized unrenormal-
ized Green’s function

I = l'gAf"(x,.l — Xz,)s (1.2)
le

where A7¢(x) is the Fourier transform of a suitable
regularization of the net (1.1). Hepp uses the simple
regularization

A;‘G(k) — Pl(k)f daeia(kz—m12+i€)’

whereas Bogoliubov uses

(1.3)

AM(K) = Py(k) L dal (@) =+, (1.4)

* National Science Foundation predoctoral fellow, 1963-1966.

! N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory
of Quantized Fields (Interscience Publishers, Inc., New York, 1959).

2 N. N. Bogoliubov and O. S. Parasiuk, Acta Math. 97, 227
(1957).

8 K. Hepp, Commun. Math. Phys. 2, 301 (1966).

where
L) = 1 + 3 ;e Ms'=m) (1.5)
2

for suitably chosen c;, M; [see Ref. 2, Eq. (1.8)]. It
follows* that

lim lim I"*

elo rio
is a continuous linear functional on the subspace Sy
of test functions ¢ € § = §(R*") which vanish suffi-
ciently fast whenever any x;, x; coincide. Here 8§ is
the space of C* functions of fast decrease, appropri-
ately® topologized, and 8y is a closed subspace with
the induced topology. The above limit exists in the
(weak) topology of the space 8’ of continuous linear
functionals (tempered distributions) on 8. The BPH
theory gives a prescription for “renormalizing” 7"
by subtracting counter terms which vanish on Sy,
so that the remainder RI™ converges to a tempered
distribution on all of .

Now, the regularizations in (1.3) and (1.4) “cut off”
all the components of k and are Lorentz covariant.
The purpose of this paper is to extend the above
result to a case where the propagators (1.1) are regu-
larized so that only the space components of k are
cut off. Thus our regularized propagators will have
the (noncovariant) form

AT(R) = iP(k) fiJ0)/(K* — m} + ie),
where £,(0) = 1, fy(k) = 1, and
S k) ——>0

[k =

(1.6)

rapidly for % > 0. We show that, for the case of an
exponential cutoff

f(K) = e, 1.7

the regularized unrenormalized Green’s functions

1" constructed from the propagators (1.6) are finite

4 Sec. 4 of Ref. 3. See also O. Parasiuk, Dokl. Akad. Nauk, SSSR
100, 643 (1955).

® See, e.g., I. M. Gel'fand and G. E. Shelov, Generalized Functions
(Academic Press Inc., New York, 1964), Vol. 1.
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in all orders of ¢* perturbation theory and that the

regularized renormalized Green’s functions RI"¢

converge in the topology of 8 to the usual expressions:
lim lim I = lim lim I"*,

1.8
elo glo elo rlo ( )

The significance of this extension is twofold.
Firstly, it provides an example of an non-Lorentz-
invariant theory, depending on a cutoff parameter 7,
which converges to the usual Lorentz invariant theory
as 7 | 0. Secondly, a cutoff such as f,(k) is the type
which Nature herself might provide.® The propagator
(1.6) would arise if the large spacelike momentum
contributions to the interaction Hamiltonian were
suitably cut off, corresponding in x space to a smearing
of the region of interaction among the fields. This
would mean that a spatial extension is ascribed to the
particles associated with the fields so that they acquire a
definite density distribution such as might be provided
by interactions with other particles not explicitly
considered or by the existence of a finite intrinsic
“radius” associated with the particles. The regularized
propagators (1.3) and (1.4), on the other hand, have
no such interpretations and appear, in fact, to be
without physical significance.

For simplicity, in this paper we explicitly consider
only the case of a scalar field ¢(x), self-coupled
according to the renormalizable interaction’” ¢(x).
The propagators

AT(R) = ie ¥ (k2 — m? + i€)
will result if the usual interaction

f dp dq dp’ dy' SD)HDIP)H@)@ +q — P — ¢)
(1.10)

(1.9)

is replaced by

f dp dq dp’ dq'$(p)H@)$(p)$(Q)
x et g g —p' — ). (L11)

In x space, this corresponds to replacing the interaction

A f dxd(x, 1) (1.12)

by

[ ax] [aygir, 0563 - S ECEE

8 For earlier discussions of cutoff theories see, e.g., E. Arnous,
W. Heitler, and Y. Takahashi, Nuovo Cimento 16, 671 (1960) and
references cited therein,

7 As K. Hepp has Bindly pointed out to the author, spacelike
regularization cannot be used for higher spin theories. Consider,
for example, the second-order self-energy diagram in a theory with
A(k) = k2|(k® — m? + ie). Spacelike regularization can, however,
be used in any renormalizable field theory.
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The factor f,(y — x), the Fourier transform of f,(k) =
e=™, has the significance of a form factor describing
the spatial extension of the particle associated with
$(y, 1).

In Sec. 2 we outline aspects of the BPH theory
relevant to our work and record some BPH theorems
and equations which we need. In Sec. 3 we discuss
the regularized unrenormalized Green’s functions
I"* and show that they are finite for > 0, € > 0.
In Sec. 4 we discuss the renormalized functions
RI™¢, show that the renormalizations can be
implemented by adding spacelike-regularized counter
terms to the Hamiltonian, and establish the equality

(1.8).

2. BOGOLIUBOV-PARASIUK-HEPP
RENORMALIZATION

In this section we only write down the parts of the
BPH formalism to which we must explicitly refer.
The reader is referred to Hepp’s paper® for a coherent
presentation of the renormalization procedure and for
proofs of the theorems. One begins by writing the
regularized unrenormalized function (1.2) in momen-
tum space and introducing the « representation (1.3)
for the propagators. The k integrations are then
performed by means of the relation®

lim dk»ei(ak2+b'k)—6(k°2+k2) - Ei e—ib’/‘m, 2.1)
st ia®

valid for a > 0. One thus obtains
I+ 2 p) = (S 1) f oy -+ - docge(o, OF o)

X exp [iabi:lAabw)(pa : ,,,,)], 22)

where
L L
e(x, €) = exp (—im2 Sa,—e> ocl), (2.3)
=1 =1

Fy(e) is a rational function of the o’s with possible
nonintegrable poles when some «; = 0 (r = 0), (4,)
is a positive semidefinite quadratic form satisfying
Yo AapXaxs < 2 0D, %)% and Ag(«) are rational
and homogeneous of degree +1 in a.

Now, (2.2) is to be renormalized by subtracting
from it terms corresponding to diagrams obtained
from the original diagram G by combining subsets
of the original set {V; - -- V,} of vertices into “gen-
eralized vertices” in all possible ways. These general-
ized vertices {V;---V¥,} are inductively assigned

8 Reference 1, pp. 288-289.
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vertex parts Xp<(Vy -
TV - V)

- ¥,) as follows:

1, ifm=1,
=10 fGV - Voo )
1 is weakly connected,
—MRE(VY -+ - V1), otherwise,
T i 7€, r,e
REVL - Vo) = 3 TIXEVE - Vi) TTA™.

Here 37 is over all partmons v vE b1

j < k(P), of {V{---V,} into 1 < k(P) <m sets
and J]conn is over all I € £ which connect different
sets of the partition. The M operator is defined in

p space by

MREV -~ Vo)
=M(p1 + -+ + p)F(p1s 5 P)
= p + DT, P (24)

where T is the Taylor series of Faround p =+ - =
P = 0 up to order », the superficial divergence of
GV -V, 0, if v>0and T=0if » <0. The
renormalized regularized Green’s function is finally
defined by

RI™ = RE(Vy - V) + Tp(V- -+ V). (2.5)

The subtraction terms will thus be « integrals of
the form (2.2), with the same duae(a, €) as I but with
different F’s and A4’s. We can therefore write the
regularized renormalized function as

RF’E(Pl P Pn) = 5(2 Pa)f:o d“l e dc:Le(oc, €)
X {Fo(«) exp [i 3 Ap(@)p,p,]

- }: Fia pexp i 3 4 b<a)pam} @.6)

The integral in (2.6) can be written as a sum of
integrals over all possible sectors of « space of the form

w222 @7

Hepp proves that in each such sector the integrand in
(2.6) can be written as a sum of terms of the form

5(Z peles €) f dry - dryP(P)Q(a, )

[H D, )R¥(a, -r)] exp [i 3 rida(e Iaps],

§=1
2.8
where )

P(p) is a monomial in the p,’s, 2.9

RICHARD A. BRANDT

O(«, 7) is a rational function in the «’s and ’s, uni-
formly bounded in (2.7) forr > 0andall0 < ; < 1,
(2.10)

D¥a, 7) = H D;¥a,7), £, <€,

ety

Q%nf.’—(ﬁ lf l#]’ 1—1,

D(«, 7) is rational in «, 7 and D/(«a, 7) > o, forr > 0,
(2.12)

A(x, 7) = (A (a, 7)) is a positive semidefinite quad-
ratic form, the A, (o, 7) are rational in o, and
homogeneous of degree +1 in a, (2.13)

and where the R'(«, ) are rational functions of «, =
which are such that (2.8) is integrable over (2.7) for
r | 0. R%(a, 7) is essentially a monomial in 4{)(x, 7),
where A is a form with the properties of 4 and such
that

(2.11)

2

4%, 7| < ¢; max {a, |l €L]]},
6 <, £t

Equation (2.8) is convergent for r | 0 in (2.7) because
a, > ap forlef, I'el in (2.7). We remark that the
D7 %(a, 7) factors arise from the use of (2.1) to perform
the k, integrations, where &, is the momentum assigned
to the line /and D, corresponds to a. Furthermore, the
conditions (2.12) and (2.14) are all that are needed to
establish the integrability of (2.8) in (2.7). The 7’s in
(2.8) arise from the use of the expression

(2.14)

fdf(l —7) armf(fxl, o, Tx,,) (2.15)
for the rema.mder of the Taylor series of f(x,, " - -, X,,,)
around (0, - - -, 0) up to order .
It follows that
tim Iy, > 22) = 11,2 p) (2:16)
.

exists in the ordinary sense and is [apart from 43 p,)]
a polynomially bounded C® function. Hepp finally
shows that

lim I"(py, +* + , pa)

€40
exists in 8" for the py, -+, p,_, restricted to any
m-dimensional linear manifold, 0 < m < 4(n — 1),
so that the nth order Green’s functions

<T¢(x1) e ¢(xm)>(ﬂ) »

renormalized as above, are in p space [up to 63, p,)]
Lorentz covariant boundary values in 8'(R¥™-1) of
sums of Feynman integrals.

3. SPACELIKE REGULARIZATION

In this section we are concerned with the regularized
unrenormalized Green’s function "¢, corresponding
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to the diagram G = G(V,, -+ -, V,,, L), which replaces
(2.2) when the spacelike regularized propagators (1.9)
are used instead of (1.3). In order to perform the
integrations over the internal momenta, we use the
relation

. . 2 . - i__ _ o2 2
lim dkec(ak +bk)e {k Eke S8(k° +k7)

alo
—_ Zr_z [a(a _ iDsl—ie—ib’/me[a(ﬁb-g—iiz)—-b’C]/da(a-iﬁ)’
i
3.1
valid provided
a>0, Re@a—i)=a+ (>0, Re{={ >0,

(3.2)

where we wrote { = {;, + i{, with {; and {, real.
Equation (3.1) is a generalization of, and can be
derived in the same way as, Eq. (2.1). The simplicity
of the relation (3.1) is the reason for our choice of the
exponential cutoff (1.7). The factorization of the
exponentials in (3.1) into a Lorentz invariant piece,
the same as occurs in (2.1), and a non-Lorentz
invariant piece will be especially helpful.

According to the Feynman rules, we have in
momentum space

I"“(py - o) =f1( li[la(z k — p,)

. —onk,
: e gk, (33)
<t kY — m® + e
where K contains the vertex and 2x factors and the
4 functions represent momentum conservation at
each vertex (3 k is the sum of the momenta of the
internal lines meeting at the vertex a to which the
external momentum p, corresponds). We introduce

the « representation (1.1) to get
I"(py - - py)

= deal'--daLfexp (i;alki —Zn‘?_,‘kf)
x e(a, e)l;[é(z k— p) Iz-'[dk“ (3.4

where e(x, €) is given by (2.3). We proceed formally
and use (3.1) to perform the k, integrations. We
afterwards show that the conditions (3.2) are satisfied
at each step and that the resulting « integrands are
integrable so that our manipulations were justified.
Thus we arrive at

I"(py -+ po) = &3 p) f doy -+ - dage(s, F (o)

x exp [i 3 Au(@)(ps * Pyl
X exp [—2 Ug(o, 7)Ps * P].  (3.5)
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Our notation indicates the crucial fact, which follows
from comparison of (2.1) and (3.1), that functions
Ag(e) and
Fy(x) = lim F,(«)
nto

defined by (3.5) are the same as those defined by (2.2).
It is furthermore clear that

lim U, 5) = O.
.,lo

Although we have not yet shown that (3.5) is finite,
the quadratic forms 4 = (4,,) and U = (U,,) are
still well defined. All our results follow from the
positive semidefiniteness of the following forms:

A, ReU, A4+ ImU. 3.6)

That A is positive semidefinite (psd) has already been
shown by Bogoliubov et ai.»? by the method of
induction. They observe that A is psd for the simplest
diagrams and that if the 4 corresponding to any
diagram G has this property, then so do the A’s
corresponding to the diagrams G, and G, obtained by
(a) adding a new internal line for a given number of
vertices and (b) adding a new vertex together with one
line joining this vertex to one of the old vertices.
Their result then follows from the fact that any dia-
gram can be constructed from the simplest diagrams
by means of successive application of a suitable
number of operations (a) and (b). We now use this
same method to show that Re U and 4 + Im U are
psd.

All diagrams for the ¢* theory can be constructed
as above from the simplest second-order diagram
(AAZ)—for which 4 = « and U = 27 have the desired
properties. Thus we suppose that the 4 and U defined
by (3.5), corresponding to the arbitrary diagram G,
are such that Re U and 4 4+ Im U are psd and con-
sider operation (a). We assume that an internal line
I, with momentum k, is added between, say, vertices
1 and 2 of G to create diagram G,. This replaces the
factors

a(g k+ pl)a(g k + pg) G.7)
in (3.4) by
1
2m)?
x 5(; k4 p, — ko)a(g k + pg — ko) dk,. (3.8)
Thus, defining
=LV {L}L

. 2 2, . 2
fdaoelao(ko—m +zc)e—2v’ko

e =1, er=0 (l'>2),

(3.9)

€y = _19
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we see that the transformation G — G, induces the
transformation

&3 o) f day - - doge(a, OF (o)
X exp [’zAabPa polexp [— Z atPa * Pb]

83 p) f dog - - - dotger (o, OF, (a)(z )4

b f dkgexp {i[(xg + X Ageeks + 2 z Agekopy

+ 2 Aabpapb]} €xXp (_1)[(2'7 + Z Uabeaeb)kg
+2 z Uabeako *Po + z Uabpa * Pb]

= 53 p) f dotg - - dugeg ( F () ——

(3.10)

(2 )t
x f dky exp {il(og + a)K2 + 2ko - b + c]}
x exp (— D27 + DKE + 2k, 401 1D
=2 po) J‘ dog * - - dogep (o, F () —— (2 v
x {(#0 + @og + a — i2n + OF}?
b2
X €exp [ (c — s a)} exp (—1DW. (3.12)

In (3.11) we have introduced the definitions

a= Z Aabeaeb’ b = E Aab ean, c= z Aabpapb:

(3.13)
g = 2 Uabeaeb’ g = Z Uabeapba v = z Uabpa *Py>
(3.14)
and in (3.12) we put
_—et+ab-E— )+ b+ ]
(x4 a)le + a — i2n + 0] ’
a =05, (3.15)

according to (3.1).

If we decompose {, §, and » into real and imaginary
parts by writing
{=0+il, E=§ +1i&, (3.16)
it then follows from the induction assumption of the
positive semidefiniteness of Re U that

Ly=Re> Uyee, >0, »ny=ReX Uk, -k, >0,
vy 2 g% (3.17)

The last inequality follows from the fact that the
discriminate of the quadratic form Re Y U,x,x, is
nonnegative for x, = pit; + .1, (i = 1,2, 3) so that

(Re 3 U,,papiXRe 3 Uye,e,) > (Re Y Uypie,).
(3.18)

v = v + iv,,
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Similarly, the positive semidefiniteness of 4 + Im U
implies that

a+C220, —c+ v 20,
@+ LX—c+ %) >+ 8y, (3.19)
for p, = (0, p,) (note that p, - p, = pop? — p, - p, so

that —c = + 3 A,p,- P, > 0). Finally, since 4 is
psd, we have

a>0, —ca> — b2 (3.20)

Keeping p, = (0, p,), we will have shown that the
operation (a) preserves the positive definiteness of
Re U and 4 + Im U provided we show that

ReWb >0 3.21)

and

—c+ P(e+a)] +ImW >0 (3.22)

We have

e+ a+ 0"+ (2n + L)' TRe W
= (2n + LI(b + &F — &l — 2(x + a + L&,
c(b+ &)+ nlla+ a+ 5P+ 2y + )
(3.23)

>l — gf)@"? + ) +Cn+ &b + 52)2
~ 2+ a+ g - (b+ &) +r(x+a+ £o)?
(3.24)

> Lb + E)' — 2(x + a + ()& - (b + Ey)
+ El)@+ a + )° (3.25)
= (/LI + &) — (« + a + L& (3.26)
> 0. 3.27
Here (3.23) follows from (3.15), (3.24) from 2#», > 0,

{, >0, and (3.25) from v»,{; — &2 > 0. This estab-
lishes (3.21). We also have

(e +a+ &P+ 2+ ) Im W
= —(2b-§; + 2§, 52)(277 + &)
—(2b-E—E+E)a+a+t by
— ¥ + DG + 20 + §)*1 — b,

+wlle +a + )+ 2n + L)%
(3.28)

]

so that

(o4 a+ 00+ 2 + m[—

=—2b- gl + 2&1 . Ez)(z"? + Cl)
—(2b & — B+ B+ a + L)
+b¥ e+ a + L) + (—c + »p)
X [« + a + &)+ 2y + L)
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= [(@ + L)(—c + v) — (b* + 2b - E; + EP)]
X(e+a+8)—2b+8)-E(2n+ &)
+ENa+a+ L)+ (—c+ )
X [a(o + a + L) + (20 + 4]

> —2(b+ &) - E(2n + {) + El(w + a + &)
4+ Ey,)*

AL 3.29
et (3.29)
. Qr+Lb+E) T
<+a+cz>[ et 51}
>0, (3.30)

where (3.29) follows from (3.19) and (3.30) from
a + ; > 0. This establishes (3.22).

Next, we again suppose that 4 and U defined by
(3.5) are such that Re U and 4 + Im U are positive
definite and consider operation (b) applied to G. We
assume that the new vertex 0 is connected with vertex
1 by a line /, of momentum p,. In (3.4) this will give
rise to the transformation

1 N

x 6(2 k+ by + ko)a(po — ky) dky, (331)
1

where 2 is the ¢* coupling constant. Thus, defining
L=L Uik} e=0 (¢22), (3.32)

we see that G — G, induces the transformation

(2] [doa - dasete OF ) exp [ 13 Aupe ]
X exp {—E UsePo * Pb]

Ny ( éopa) f dog - - - dacgeg (o, F (a)(—7)

X ¢xp {i[aopﬁ + E AuPo + €.0oXPy + €,00)}
X exp (_1)[2"71)3 + E Uan(Pa + €:00) * (P, + €,po)]-
(3.33)

It follows immediately that the new Re U and the
new A + Im U are psd. This completes the induction
proof and establishes the positive semidefiniteness of
the forms (3.6) for an arbitrary diagram.

It follows from the above theorem and its proof
that the conditions (3.2) are satisfied at each step in
the evaluation of the k; integrals in (3.4) so that use of
(3.1) is justified. We simply observe that (3.2) hold
for the simplest diagram and that if they hold at each
step in the evaluation of (3.4) corresponding to the
arbitrary diagram G, then they do likewise for G,
and G,. Indeed, for the &, integration in (3.10) the

91=1,
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conditions (3.2) become
og+a>0, a+ >0, 2n+ 4, >0, (3.34)

and these follow from the positive definiteness of A4,
A + Im U, and Re U, whereas the k, integration in
(3.31) is evaluated by means of d(p, — ko). This
establishes the equality of (3.4) and (3.5).

Our final task in this section is to prove that the
integrand in (3.5) is (Lebesgue) integrable so that
(3.5) is well-defined and finite. This will also be shown
to follow from the above theorem and its proof. We
use the above method of induction to show that for
an arbitrary diagram G(Vy---V,,L) the corre-
sponding function F,(«) satisfies for fixed 5 > 0 the
condition

|F,(#)] < const T] o ? (3.35)
el
for some subset £ of £. This is immediate for the
simplest diagram and so we suppose it holds for F,
in (3.5) corresponding to G and show it then holds
for the F,’s corresponding to G, and G,.

We see by (3.12) that G — G, induces the trans-

formation

F(@) > Fy(0) = F(a)[m2/(2m)*%]
X {(ag + a)[og + a — iQ2n + DPYE (3.36)

However, since a > 0 and {; > 0, we have

[{(@o + @)l + a — iy + OPY
= (g + [ + @ + L) + (2 + LTH
< (@)%’ (3.37)
so that
| Fop()] < const T ocl_%,
tef,
where £, =£ U {I}. Next, we see by (3.33) that
G — G, induces the transformation

Fy(a) > Fypy(@) = Fy(a)(—2)

(3.38)

(3.39)
so that
[Fpy(e)] < const TT al‘é.
leE

(3.40)

This establishes (3.35) for an arbitrary diagram.

Now we can establish the integrability of the
integrand in (3.5). This follows from the facts that it
is measurable and, since (3.35) holds and

Re {z Ul )P+ p,,)} >0,

it is bounded by the integrable (for > 0 and ¢ > 0)
function

L
const exp (—e > a,) 11 oc,"}. (3.41)

=1 el
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This shows that the spacelike regularized propagations
(1.9) define a finite unrenormalized perturbation
theory.

4. RENORMALIZATION AND REMOVAL
OF REGULARIZATION

Now we are ready to discuss the renormalization
of (3.5). We want the subtractions to arise from the
addition of spacelike-regularized counterterms to the
interaction Hamiltonian (1.13) and to be such that
the equality (1.8) holds. There still remains, however,
a large amount of arbitrariness in the choice of these
subtractions. The simplest procedure would probably
be to use the BPH prescription (2.5) with the M
operator (2.4). This would correspond to spacelike-
regularized counterterms but would require a rather
involved proof of (1.8). Such a proof would require
the use of more properties of (3.5) than we have
already established and would, furthermore, not be
applicable to more general cutoffs in which terms like
72/ could appear in U.

We are thus led to consider a more general M
operator which amounts to splitting U into two parts,

U=U +U", 4.1)
where
U—0
ni0
and
U ——0,
70

and applying M only to U’. This M operation would
still correspond to spacelike-regularized counterterms
since U”, the only form to which M is not applied,
involves only spacelike momentum components. In
fact, using the methods developed in Ref. 9, we can
write, for example, the charge-renormalization counter
term [the analog of (Z;* — 1)j¥4* in electrodynamics]
in the form

| [H B40IfB) |0 WINE R, (42)

where

Fprs 5P P = g(MSIZ;)(pl, RN )

(4.3)

Here Y is over all strongly connected Feynman
diagrams G (I}, is the corresponding Green’s function)
with four external lines (we actually only sum up to
some finite order, of course). S is the operator defined

? R. A, Brandt, Ph.D. thesis, MIT (1966) (to be published).
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in Ref. 9 so that, if we write

I’c’i{l’n Ps> Pss> Do)
. [ dk dk’

=i D —

f @2m)* (2m)*

X J'('}(ks P — k— k,s k” D25 D3> P4), (4-4)

where the D’s are regularized unrenormalized propa-

gators and Jg is the regularized unrenormalized

function corresponding to a suitable diagram with
six external lines, then

Dgyy(k) D(p, — k — k') Dpe(k")

SI, = il f RD@RDgRDgRIG, (45

where R is defined by (2.5) using M instead of M. If
we substitute the « representations of the factors in
the integrand (see below), perform the k and k' inte-
grations, and apply M, we arrive at an .expression for
F, 01 - PO, po) as a sum of terms of the form

L0} 3D f dry -~ dry, f doy -+ docg oo )

X Fg (o, 7,7, p) exp [—EbUé';ab(a, T, )P, * po]-
a

(4.6)

Now we want 4 + Im U’, Re U”, and Im U” to be
psd forms and, in order to have a simple proof of
(1.8), we also want the matrix elements U,, to be well
behaved. We can achieve all this with the following
choice of M. Operating on any expression of the form
(3.5), with 4, Re U, and A + Im U psd forms, our
M operator is related to the BPH M operator by

Mfdae(as E)F,,(a, P) €xp [l Z Aab(a)papb]
x exp [— 3, Un(e, 7)p, « Ps]
= f dae(, €) exp [—3 Wil n)pa - BoIMF,(x, D)

X exp [i z Aab(“)Pan —i z Vab(“’ ﬂ)Pa M pb]:

@7

where the real forms Re W, Im W, and V are defined
by

Re W =Re U, 4.8)
Im W = [(4 — B)/(4 + BB, 4.9
V= —A4 + [4AB)(A + B)*]B, (4.10)
with
B=A4+ImU, “.11)
A = % [Agp) B = % | Byl 4.12)

It is then immediate that

U=ReW+ilmW+iV=W+iV, (4.13)
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that the forms

ReW, ImW, A+ 7V, 4.14)
are psd, that
War(a, 0) = Vy(a, 0) = 0, (4.15)
and that
Valo, I < S#(e). (4.16)

We see in particular that M could be applied to (3.5)
even if U contained terms like 1/a, whereas then M
could not be applied.

We extend M to operate on sums of « integrals by
linearity. A further property of M is that it, like M,
is idempotent: M2 = M. This follows from the fact
that if W corresponds to the pair 4, U = W + iV,
then it also corresponds to the pair 0, W. We should
also mention, in connection with expressions of the
form (2.8), which are actually sums of « integrands,
that A7 does not commute with {1 dr but that it does

commute with
1 a j+1
[t - r)’(—) ;
) or
ie.,

hrd L \dr(1 — 7y (a%)m%(r, p)

= L dr(1 — 7y (a-aT)MMJc(f, p. (417

Thus the = differentiations implicit in (2.8) must be
undone before M can be taken inside the 7 integrals.

Now we define RI™¢ analogously to the definition
(2.5) of RI™ except that the M operation is replaced
by the A operation and the space-time regularization
(1.3) is replaced by the spacelike regularization (1.9).
Then, corresponding to each term (2.8) integrated over
(2.7) contributing to RI"*, we will have a term

53 po)e(os €) f dry - - dryP(p)Q(e 7)
N
x [H D9 (e, 7, PR, T)]

i=1
X exp [i 3 73A,(%, T)Paby — 1 2 71V a0 T, )Py * Pol
X exp [—3 W(ets 7, 7P, * Py) (4.18)

integrated over (2.7), with r = 0, contributing to
RI"¢, where

D(i)(‘za 7 7l') = H Di-z(o‘s 7, 7)),

1ef
Dy(x, T, n) is algebraic in «, ;-, 7 and
|Dfet, 7, )| > «; for 5 >0, (4.20)
D(a, 7,0) = Da, 7), (4.21)
A(e, 7) + V(a, 7, 1), Re W(a, 7, 1), Im W(a, 7, 1)) are

(4.19)
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psd quadratic forms whose matrix elements are
rational functions of «, 7, 7, (4.22)
V(x, 7,0) = W(a, 7,0) = 0. (4.23)

RI"¢ will contain other terms corresponding to (2.8),
each of which will have the form

53 p)e(os ©) f dry -+ - dryP(p PO 7)

and

i=1

y [ﬂ D9, 7, RV, 7, n)]

x exp [i X 73A(a, 7)pp — i S 7V (x, 7, 7)PP

— 3 W(e, s mppl, (4.24)
where

P(p, p) is a monomial in the p,’s and p,’s, (4.25)

and R%(a, 7, n) differs from R*“)(a, 7) by having some
factors A%)(«, 7) replaced by factors V)(a, 7, ), which
are rational function satisfying

IV(aig(“a »PI<S 2 IA‘(:;,)(O(, ) = 5"*“)(“’ 7)
ab

and (4.26)

Vo, 1,0) = 0.

The results stated in the above paragraph can be
derived in exactly the same way as (2.8)—(2.14) were
derived by Hepp. The required additional algebraic
manipulations are precisely the same as those per-
formed in Sec. 11I. We should emphasize that although
the algebra is the same, Hepp’s induction proof is
much more subtle than the one used in Sec. III since
it takes renormalization into account. We do not give
a detailed derivation here, but mention the algebraic
differences between such a derivation and that of
Hepp and show how they lead to (4.18)(3.25).

Hepp’s proof amounts algebraically to establishing
the invariance of the form (2.8) with the properties
(2.9)-(2.14) under the operations (b) and (a) of Sec.
111 followed by an application of the M operator or,
using (2.15), the (1 — M) operator. We do the same
thing for (4.18)-(4.26). We first observe that the
operation (b) essentially only creates new quadratic
forms A’, V', W', whose matrix elements are linear
combinations of the corresponding ones in (4.18)
and «, and 27 and which trivially leave the properties
(4.22) and (4.23) invariant. The invariance of (4.22)
under operation (a) follows as in (3.27) and (3.30) if
one first combines the W and i72V in (4.18) into a U
and then, after application of (a), makes a new W”
and iV" according to (4.7)—(4.11). Operation (a) also
multiplies the integrand in (4.18) or (4.24) by

D%w, 7, 1) = {(% + @) + a — iy + P},
4.27)
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where
a =2 Apesys =2 Wy + iValee,, (4.28)

so that
a>0, a4 {,>0. 4.29)

Thus

[D (o, 7 )I° = |(%g + @)ao + @ — iy + OP
= (o + a)z[(% +a+ Cz)z + 2g + ‘:))2]3
> aglogl® = ap (4.30)

]Dlu(“, T, M| 2 %

Furthermore, comparison with Hepp shows that
D, (¢, 7,0) = D, (o, 7). Thus the properties (4.19)-
(4.21) are invariant under (a).

Finally we apply # or (1 — M), recalling (4.17).
These operate on functions of the form

P(p)exp [3, (id"pp —

M brings down factors A”pp and V'pp whereas
(1 — M) changes (4.32) to

1 1 a J+1
2 f dr(l — -of(—-) P(rp)
jtJe or
x exp [Y (i7*A"pp — i7*V"pp — W'pp], (4.33)

which brings down factors of 74"pp and ~V"pp. In
either case we get a term involving only A"pp and this
is absorbed into P(p)Q(x, 7)R(«, 7). The remaining
terms are absorbed into P(p, p)Q(x, )R(«, 7, ). This
completes our outline of the derivation of (4.18)—(4.26).

We can now show that the integral of (4.18) over
(2.7) with r = 0 converges, as # ] 0, to the integral
of (2.8) over (2.7) with r = 0 and that the integral of
(4.23) over (2.7) with r = 0 converges to zero. This
will imply that

or
(4.31)

iV'pp — W'ppl. (4.32)

lim I = [%€ = lim I",
nta rio
from which (1.8) will follow. In view of (4.21), (4.23),
and (4.26), we need only show that the # limits can be
taken inside the « integrals of (4.18) and (4.24). This
is easily shown to follow from Hepp’s result that (2.8)
is integrable over (2.7) for r | 0 whenever (2.9)-(2.13)
hold and R¥«, 7) is a monomial of sufficiently high
order in the 4%)(«x, 7), which satisfy (2.14).
First we consider (4.18). Taking (4.19), (4.20), and
(4.22} into account, we see that it is bounded by the

(4.34)
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function

1
53 pe f dry - - dry [P(P)Q(a 7)
X [ﬁ D%a) [R¥(a, r)f], (4.35)

where =
DY) = 1;[ ot (4.36)
lek;
It follows from the (absolute) integrability of (2.8),
in particular whenever Do, 7) > «;, that (4.35) is
integrable over (2.7), r = 0. Hence, by the dominated
convergence theorem, the 7 limit can be brought inside-
the integral of (4.18) over (2.7), r = 0, to give the
integral of (2.8).
Next we consider (4.24). By virtue of (4.19), (4.20),
{4.22), and (4.26), we see that it is bounded by the

function

1
53 pe ™ f dry -+ - dry |P(3, PO 7|
x [f‘vf DY) |R(a, T);], (4.37)

where R¥(a, 7) differs from R%¥(a, 7, ) by having
its factors V@(«, 7, ) replaced by SA®(a, 7). It
again follows from the (absolute) integrability of
(2.8), in particular whenever D,(«, 7) > «,; and (2.14)
is satisfied, that (4.37) is integrable over (2.7), r = 0.
Thus the dominated convergence theorem tells us
that the # limit can be brought inside the integral of
(4.24) over (2.7), r = 0, to give zero. We thus establish
(1.13).

The simplicity of the step in the preceding paragraph
is a consequence of our use of the A7 operator. Had we
used instead the M operator, the V’s in R(a, 7, 7)
would have been replaced by U’s, which do not
satisfy an inequality like that in (4.26). Thus the
existence of the » | O limit of the integral of (4.24)
would depend on more detailed properties of (4.24)
than we have used.
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It is shown that the resolvent operator for the Hamiltonian which is the sum of the harmonic oscillator
Hamiltonian H, and a polynomial perturbation gP(x) of degree exceeding two (g is a coupling constant)
is not expressible as a convergent power series in g. The source of this nonanalyticity is the failure of the
anharmonic perturbation operator to be small in norm compared to H, . The nature of the singularity at
& = 01is conjectured. The result makes clear that the divergence of the Ward-Hurst-Thirring model has
nothing to do with the “difficulties” of field theory which are related to the infinite number of degrees of

freedom of a field.

THE purpose of this paperis to indicate the phenom-
enon of nonanalytic perturbations (i.e., perturbed
Hamiltonians. whose eigenstates do mnot possess
convergent expansions in the unperturbed states) in
simple nonrelativistic quantum mechanics, as well as
to indicate its relevance to this phenomenon as
discussed in connection with field theories. It is shown
that the expansion of an anharmonic oscillator system
in harmonic oscillator states is never convergent. The
result may be relevant to the physics of anharmonic
systems per se, as in connection with crystal problems,
but this aspect is not pursued here. Our purpose is
rather to emphasize that these results clarify the
significance of the well-known results of the divergence
of the perturbation power series (p.s.) for a non-
linearly self-coupled boson field (the Ward-Hurst-
Thirring model),! as well as a general three boson
field coupling. Consequently the inference drawn by
some? for general relativistic field theories from the
property of the Ward-Hurst-Thirring model is
unwarranted. A number of other simple nonanalytic
models have been studied in recent literature,® also
carrying with them insinuations regarding field theory.
These models involve the basic type of structure
studied in this paper, and can be understood in the
light of these results. They do not pertain to field
theory as suggested.

Another interesting conclusion that is suggested in
Sec. IV is the phenomenon of “analyticity flip,” i.e.,
that while there is no analyticity in g there is “essential

1 C. A. Hurst, Proc. Cambridge Phil. Soc. 48, 625 (1952); W.
Thitring, Helv. Phys. Acad. 26, 33 (1953); A. Petermann, Arch.
Sci. Phys. Nat. 6, 5 (1953); R. Utiyama and T. Imamura, Progr.
Theoret. Phys. (Kyoto) 9, 431 (1953); W. M. Frank, J. Math. Phys.
5, 363 (1963).

2 See, e.g., S. Frautschi, Progr. Theoret. Phys. (Kyoto) 22, 882
(1952), p. 882 footnote*; A. Peres, J. Math. Phys. 4, 332 (1963);
G. A. Baker and R. Chisholm, J. Math. Phys. 7, 1900 (1966).

3 A. Peres, J. Math. Phys. 4, 332 (1963); F. Calogero, Nuovo
Cimento 30, 916 (1963).

analyticity” in 1/g. [f(2) is said to be “essentially
analytic” at z = 0 if one can find «, § such that
2*f(z%) is analytic at z = 0.] Such an analyticity flip
has been noted in connection with a solvable field
theory model.

This paper presents a preliminary study of this
situation and leads to interesting questions which
should merit further investigation. The quantity
studied is the resolvent operator, and the weak
divergence (which is the strongest type of divergence)
of its p.s. is demonstrated by combinatorial methods.

The result is first demonstrated for the ground-
state expectation value of a class of anharmonic
perturbations in Sec. II. The results are extended to
all anharmonic perturbations and to all matrix
elements in Sec. III. The nonanalytic behavior is
classified in Sec. IV. In Sec. V the results are discussed
in the context of Hilbert space theory. Other ap-
proaches and ramifications are discussed in Sec. VI.

1. THE PERTURBATION EXPANSION

We consider the one-dimensional system defined by
the Hamiltonian
H= H, + gV. o)

The unperturbed Hamiltonian H, is that of a har-
monic oscillator

Hy = }(p* + 0*¢® — o) (Y
(A = 1) with eigenstates |m) such that
(HO - mw) |m) =0 (m =0,12,-- ')' (3)

The state |m) is termed the “mth level” of the unper-
turbed oscillator [though it is actually the (m + 1)th
level]. gV is an anharmonic perturbation of the form

gV = gP(), @

¢ W. M. Frank, Nuovo Cimento 38, 1077 (1965).
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where P(x) is a polynomial in x of degree higher than
two, and g is the coupling constant. The result is
demonstrated for the more general form of ¥, a
multinomial in a and &' [the raising and lowering
operators, defined in Egs. (10a), (10b)}, but we loosely
speak of V as a polynomial in x. Only Hermitian V'
is considered, though this limitation is really not
essential. The expansion is in powers of g. For P(x)
a linear or quadratic polynomial (or multinomial in a
and a') the power series respectively converge with
infinite and finite radius of convergence. This fact
follows from the convergence theorems discussed by
Speisman.® It can also be derived by application of the
Rellich-Kato theorem on regular perturbations,® or
by the methods of this paper which have already been
applied to a study of convergence in an earlier paper.’

The quantities whose perturbation expansion we
consider are the matrix elements of the resolvent
operator

R(E) = (E — H)™ &)

taken between unperturbed eigenstates. We first con-
struct the proof for the case of the oscillator ground-
state expectation value of R(F). Other matrix elements
are discussed in Sec. III. The perturbation series is
“constructed by expansion of the resolvent operator
R(E) in powers of g which entails iteration of the
unperturbed resolvent

NE) = (E — Hy)™ (©)

(i.e., energy denominators). For this reason the values
of E should be restricted to lie in the resolvent set (i.c.,
not in the spectrum) of H,. Since R(E) has a pole in E
at a point in the spectrum of H, it is advisable to
choose E in the resolvent set of H. For g real, complex
E would be in this set, and if the spectrum of H is
bounded from below sufficiently negative E should do.
For purposes of simplicity negative E is chosen,
though all the steps follow with only an obvious minor
modification for complex E. These modifications in a
more complicated form are made in Ref. 7 and dis-
cussed in Sec. III. While some of the anharmonic
perturbations considered lead to spectra with no lower
bound, the reasoning makes clear that the expansions
in g are nonanalytic for complex E. In fact, the
unboundedness of the spectrum from above and
below in these cases is a manifestation of the non-
analyticity we are proving, since the perturbation can
in no sense be small if it changes a spectrum (the

§ G. Speisman, Phys. Rev. 107, 1180 (1957).

¢ See, e.g., F. Rellich, “Perturbation Theory of Eigenvalue
Problems,” Lecture Notes, New York University (1953); T. Kato,
J. Fac. Sci. Tokyo University 6, 198 (1951).

7 W. M. Frank, J. Math. Phys. 3, 272 (1962).
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unperturbed one) with a finite lower bound into one
which has none. The nonanalyticity also follows for a
class of perturbations leading to spectra which have
a lower bound.

We write —E = A > 0. The perturbation series for

R(—A) = —(0] 1/(A + H)|0) M

is given by the formal series

R(—i) Eﬂgognxﬂ
= — Q=D S (T 1),

where .
T(=3) = ~Vr(~3) = VII[(A + HOL

. POSITIVE ANHARMONIC COUPLING

In this section we study a class of anharmonic
couplings, which we term “positive.” These are
defined in terms of “pure” anharmonic couplings.
Anharmonic couplings where P(x) of Eq. (4) is a
normally ordered monomial, ie., of the form
P(x) = :x*: are termed “pure.” If there exists a
positive constant b such that the matrix elements of
P(x) — b :x*: for some k > 3 are all nonnegative, then
P(x) is termed “positive.” The demonstration is
spelled out in detail for the case of a pure cubic term,
though the method lends itself straightforwardly to
all pure anharmonic couplings. The combinatorial
technique of “words™ used in an earlier paper” is
applied. This involves a diagrammatic analysis based
on the particle interpretation of harmonic oscillator
states. The “lowering” or “annihilation™ operator a is
introduced.

©®)

a = (Jo)}x + iplw) (10a)
as well as its adjoint “raising™ or “creation” operator
at = (Go)t(x — iplo) (10b)

which obey [a, a'] = 1. It is assumed that the reader
is familiar with the properties of these operators as
well as their “field-theoretic” interpretation. In terms
of them

H, = wa'a

an

and for pure cubic coupling

4
V=Qoy¥a" + & +3a"a +3d'a) =3V,

foxl
(12

where the operator in parentheses is essentially a
normally ordered x3. The operators V, (i = 1,2, 3, 4)
are defined respectively according to their order of
writing in the parentheses in Eq. (12). Clearly only
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even-order terms appear in the perturbation series for
R(—21). The 2nth-order term in the expansion has the
form

V-V 1

aan_.__ V
8% © A+H0 A+ H,

V10
(13)

with V appearing 2n times. Each V is a sum of four
operators ¥; (i = 1, 2, 3, 4) as given in Eq. (12), and
by distributing this sum in the product in Eq. (13),
R,, is expressed as a sum of 16" “terms.” Each such
term is positive since all the energy denominators are
positive for positive 4 and the matrix elements of the
V; are always nonnegative. R,, clearly exceeds the
contribution of that single term where the first n
operators V (startmg from the nghtmost) are taken to
be ¥; = Qw)¥a', and the remaining n are taken to
be V, = (2w)¥a® This particular term to be de-
noted by R,, is readily evaluated.

_ 3w(u + n)(3m)! 5 1
A120™" a1 (u + m)?
_ Sop+ n)(3n)! T u)
H126%Tp +n + 1)°
where 4 = A/3w. It is quite clear that the sum
ﬁ(_;‘) = 20g2n§2n
30l W S (28 V' (1 + n)(3n)!
= 15
a2 n§o<72w5) Tu+n+1) (15)

is divergent. In fact it is clear that R,, exceeds all of
the other 16" terms in R,, for A positive, so that

ﬁ?n < R2n < 16“R2n

2n

(14)

(16)

R(g; =) < R(g; =) < R@g; —4. (17

It is seen that the 2n term in the expansion grows like
n! (to within geometrical factors). This method applies
straightforwardly to pure anharmonic perturbations
of the type

and

V= :x:* (18)

and gives the result that the 2n term in R(—2) grows
(to within geometrical factors) like n'*-2, The lack of
convergence for g with any particular phase, of
course, implies the same for g of larger modulus
regardless of phase. The divergence follows for positive
anharmonic couplings from the pure case since the
nth-order perturbation coefficient for the positive case
exceeds the corresponding coefficient for a pure case.

II. GENERAL ANHARMONIC COUPLINGS

In what follows, divergent power series are manip-
ulated as if they were convergent, with the rationale
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that the relations found would be valid up to an
arbitrarily high term if the expansion were terminated
at some other appropriately larger finite term. More
accurately, the expansions are to be viewed as asymp-
totic expansions, and the operations performed
would then be justified.

In order to establish the divergences of the p.s. for
the ground-state expectation value of the resolvent
for an arbitrary polynomial, it is sufficient to show that
for sufficiently large n, the coefficients of the expansion
grow like a positive power of n! despite alternations
in sign of the contributions from different “diagrams.”
The anharmonic coupling ¥V can be expanded
(uniquely) in the form

%
V = za, :xj
§=0

The upper limit £k of summation in Eq. (19) is
termed the “degree” of V. Without loss of generality
we take «, > 0. Because of the latter condition, there
is an integer p such that

mVin)>0 mn>p

and we choose p to be the minimum such integer.
We abbreviate

(19)

(20)

r=(1+ Hy)™;
Vﬂ n—l — V(rV)ﬂ-l
= VrVrV--- ¥V (Vntimes).

Let
Ug(m) = (O1; V"r"~; [0). @n

Let A, be the rejection operator for the state {0), i.e.,
Aglm) = (1 — 8,0) Im),
ro = Agr = AJ(A + Hyp)

and further define
To(n) = (22)

so that the intermediate state [0) is forbidden. It is
easy to see that the formal generating functions

Of; V"rg™; 10)

Ufz) = - + 2 Un)z", (23)

B(2) = ngo(n)Z", 24)

are related via the mass renormalization relation,
Uz) = [4 — B (25)

It may be shown that the coefficient of z" in B(z)
grows as (n!)¥*-1 in the sense that

0 < iim |To(mn!=F*+ 1P < oo,

fn-+on

(26)
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We call 4k — 1 the “exponent of factorial growth”
(e.f.g.) of G(2) written e.f.g. [G(z)], and also speak of
it as the e.f.g. of the sequence {T((n)}. It is easy to see
that if p is the e.f.g. of G(2) then it is also the e.f.g. of
UA(z). From the formal expansion into a power series
of the function [A — B(2)]7? it is clear, allowing for
the possibility of cancellations, that

e.f.g. [U(z)] < ef.g. [G(2)]. 27
The inverted relation
B(z) = A — U2)™? (28)

implies by the same reasoning, the reverse inequality.
Thus
e.f.g. [6(2)] = e.f.g. [UA2)]. (29)

We now determine the e.f.g. of G(2). Let the operators
V) and V) be defined by

0, if k<p,
Ve k) =
Vik), if k>p.
o if k> (30)
? 1 2
vor =] >~ 5P
Vik), if k<p.
Then
(V& |m) >0, m > p. (31
Define
T,(n) = (p|; Vi s Ip), (32)
I(n) = (pl; V©"ry7%; |0). (33)
Further define
M) = (pl; V' re 25 ), (34
M () = (pl; Ve ). (35)

In I (n), M{tX(n), and M{7(n) the pth level cannot be an
intermediate state. In M{P(n) all the intermediate
states are levels higher than p, and in M{7(n) and
I,(n) they are all lower. The arguments of Sec. II can
be readily used to establish the e.f.g.’s of the sequences
M) and M(n) for large n in terms of the degree
kof V.

efg (MP(n)} = 3k — 1, (36)
efg. {MS(n)} = 0. 37D

We can decompose T,(n) according to the number of
times that the level p appears as an intermediate state,
and write

n
T,(n) =k§1Tp(n; k), (38)
where in T,(n; k) the intermediate state p appears
exactly kK — 1 times. T(n; k) is thus a sum of products
of factors each describing a transition from the state
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p to the state p through states unequal to p. Such
transitions are described by the matrix elements
M9 (n) of Eqs. (34) and (35). To each term which
contributes to T,(n; k) there corresponds a set of k
ordered positive integers {N,--- N,} each denoting
the “length,” i.e., the number of interactions (i.e., V’s)
in the p to p transitions, as well as an ordered set of
signs {s, 53, * - *, 53} each s having the value + or —,
according to whether the corresponding p to p
transition is through levels, respectively, above or
below p. The set of integers {¥, - - - N;} may contain
multiplicities, i.e., identical entries, and we denote the
unordered set of {N; :--N.} by [nft,nf2, -, nin]
meaning that the integer n, appears r, times in
{Ny--- N} ny appears r, times:--n, appears r,
times (r; > 0), where m is the number of distinct
integers among N, - - - N,. As each p to p transition
may be through levels higher or lower than p, one
would further decompose each r; (j=1---m) into
a sum
=P+

such that r{*’ of the p—p transitions of length r; are
through levels above p, and r{~ are through levels be-
low p. Then we can write

2

e
) g )
+)

MPE)"  MPm)y"

T,(n; k) = k!f

m=1

! 5!
L MOe” MO
(! ()
= kI M(n: k),
where
Tarf=n 3Irf=k (39)
J,S=d: J,s=:i:

Let us now define a number of formal generating
functions (to be understood in general as asymptotic
series)

1@ =1 + 3 In)", (40)
By2) = 1 + 3 Ty(n)z", @1

and i
AH(@) = 1+ 3 MP )z, 42)

with coefficients defined in Eqgs. (32)—(35). Further let
T () = (Of; VE"ry 5 |0), (43)

i.e., the contribution to Ty(n) arising from intermediate
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states all of which are below the level p. Let

BO() =3 TS () (44)

Then one readily verifies that

B(z) = By (2) + [1/(2 + pw)l3*(2)

+ [/ + po)3%(2)B,(2), (45)
where the three expressions on the right, respectively,
denote contributions from terms where the state p

appears as an intermediate state zero, one or more
than one time. It is clear that

efg.[3%(2)] = efig. [B;(2)] = 0

and we wish to determine e.f. g [G,(2)].
Let us define the double generating function

(46)

=143 $hEH ,,<n K

n=1k=1

47
Then formally

f “det (=143 STk
0

n=1k=1

=143 T,(mz" = B,z), (48)

in view of Eq. (38). The quantity V,(z:f) can, how-
ever, be formally summed in view of Eq. (39).

Vien=1+335S S

n=lk=lm=1 ny--:ny

=n
% ry W=k
+) =)
[z"MP " [zmMS ()]

iy 5!
= exp ¢ 3 20 + M::’(n)l}
and formally
8@ = [ e,z )
- f Cdtexp {—1[1 — 3 2 (M + M;,—’(n))]}

~ {1 — 3 M) + M;-’(n)];'l
= I = Mo (50)

where J,(2) = M{P(2) + MS(2) as defined in Eq.
(42). From the considerations leading to Eq. (29) we
conclude that

e.f.g. [G,(2)] = ef.g. [M,(2)]
= efg [MS(2) + M57(2)] = 3k — 1

(49)
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the latter following from Egs. (36), (37). This through
Eqgs. (45), (29) leads to the result

ef.g {Uym)} = 4k — 1.

The extension of these results to complex 4 and to
other than ground-state expectation values of the
resolvent is quite straightforward. For 4 = 4, 4 i,
(A 5 0) we are guaranteed the nonvanishing of energy
denominators. The upper bounds of Secs. II and III
remain valid if one takes into account that A,, if it is
negative, will cancel a bounded part of the intermediate
state energies, an effect which is inconsequential to
the contribution from highly excited intermediate
states, which determine the e.f.g. of the perturbation
series. It is not difficult, though somewhat involved,
to show that the complex energy denominators do not
provide cancellations lowering the e.f.g. of the power
series. As the energy of the intermediate excited states
become large, the complex phase angle of each ampli-
tude becomes small due to the bounded imaginary
part of the energy denominator, and phase cancel-
lations have no effect on the e.f.g. For other than
ground-state expectation values, the same result for the
e.f.g. is valid. Excited initial and final states only shift
the energy denominators by a bounded quantity,
which does not affect anything.

Q.E.D.

IV. BEHAVIOR NEAR g =0

What can be said about the nature of the singularity
near g = 0?7 We have seen that the formal series of
Eq. (8), which we denoted by R(g:4) is now simply
R(g), hase.f.g. = = 3k — 1. The coeflicients R,, of the
power series will have a large n behavior of the form

R, = pm)n!" or R,~n!, (51)
where
fm PO _ (52)
n» hInnN

We shall simple-mindedly conjecture the singularity
suggested by the asymptotic series in Eq. (51). A
proper study of the question will be carried out
elsewhere.

Let us write formally

R, = I'(on 4+ c(n), (53)

where 7 < ¢ which is otherwise arbitrary. According
to Eq. (51)

e(n) ~ 1/n1e=" (54)

so that C(g) is an entire function of g, where

o(g) = E c(n)g".
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From Eq. (54) we conclude according to standard
theorems on entire functions that the *“‘exponential

order”® of C(g) is p= (¢ — 7). Substituting
formally

Iion + 1) =f due *u’"

0

into

R(g) = ZOI‘ (on + De(n)g™, (55)
one obtains }

R(g) =f due™*C(u’g). (56)
1]

The knowledge of the exponential order of C(g) tells
us that there is an inequality like

IC(ug)| < exp [4 |g|""" " u (57

(4 some constant). Under these conditions the integral
in Eq. (57) would not be expected to converge, a
reflection of the anticipated singularity of R(g) near
g = 0. However, the inequality Eq. (57) is too general.
Frequently the function C(g) either has sectors wherein
it approaches zero exponentially, or is a sum of such
functions (as, e.g.,, cosh z). According to results®
on entire functions, in these sectors

C(z) ~exp (—B |z}?) (58)

if the exponential order is p. For g within such an
“attenuating sector” the integral in Eq. (56) can be
evaluated by expanding e~* in a power series

R = 3 [ awrcwre

n=0

a/o—r ]

°°( )f duu® exp( [B‘gllla—r d/c—r}) (59)

11—0 n!

for large g. The latter quantity is evaluated straight-
forwardly, and results in

(_;!)n [B* || Ve p[(n + 1)(1 - 5)} )

(60)

‘which is a convergent expansion in negative non-
integral powers of [g|. It thus can be analytically
extended via this power series to the whole finite
plane of g~ and is thus “essentially analytic” in the
sense indicated earlier. Its exponential order is o/,
which implies an essential singularity near g = 0 of the
form

Re~3

R(g) ~ exp (Kg™") (61)

8 An entire function f(z) is said to be of exponential order
o > 0, if a is the greatest lower bound of real numbersy suchthat one
can find a X for which
|f@)] < exp |Kz7].
* See, ¢.g., E. C. Titchmarsh, The Theory of Functions (Oxford
Umverslty Press, New York, 1939), 2nd ed., Sec. 8.7.
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(independent of o as it should be since ¢ is arbitrary).
We thus conjecture that the singularity of the resolvent
R(g; E) as a function of g is essential at g = 0 and of
the nature given in Eq. (61). Independent calculations
along different lines are being carried out to verify this
point.

V. HILBERT SPACE CONSIDERATIONS

The results found are not at all difficult to under-
stand. They simply say that perturbation theory will
not work if the perturbing operator is not in some
appropriate sense small compared to the unperturbed
term. Such sufficiency criteria for the perturbation
treatment of operators and spectra in Hilbert space
are known and they in fact break down for the present
example, suggesting the divergences presently found.
The writer is not familiar enough with the necessary
conditions which may possibly directly imply the
results obtained. The important sufficiency condition
applicable to problems of this kind is the Rellich—
Kato theorem.® Definitions of the standard terms can
be found in standard works on Hilbert space theory.®

is said to be in the resolvent set of a
Ay is a bounded

Definition: A
closed linear operator T, if (T —
operator.

Definition: If T(z)is a closed linear operator function
of z then T(2) is said to be regular in z if for some 4
in the resolvent set of 7(0), R(z) can be expanded for
sufficiently small z in a power series in z which con-
verges in the operator norm."

Rellich-Kato Theorem: If |V} < a |HofIl + b lif1l,
(a, b constants) for all fin an everywhere dense subset
of the Hilbert space, then

H(z) =

is regular for |z| < aL.

Hy + zV 62)

Applied to our case it is clear that the conditions are
not fulfilled. In fact —A = E negative, is in the
resolvent set of H, and we have seen that

Ry(®) = —1/(A + H)
has a zero radius of convergence in the weak norm, i.e.,

(m| R,(g) In) 63)

10 See, e.8., N. I Akhiezer and I. M. Glazman, Theory of Linear
Operators in Hilbert Space (Frederick Ungar Publishing Company,
New York, 1961).

11 The norm [|4]| of the operator A is defined as

|4l = max L4717} £1l,
where franges over the domain of 4. A, = A4 in the operator norm
if [ Ay — Aﬁ 0.
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diverges for all m, n. It follows a fortiori that R,(g)
is divergent in the operator norm (since operator
convergence implies weak convergence) for such 4,
and this by the theorem implies divergence for all 2.
The Rellich-Kato theorem is the basis of convergence
criteria in quantum mechanics discussed by Speisman.®

VL. DISCUSSION

The result obtained is basically transparent. It is
related to the result of Baym!? concerning the lack of
a lower bound in the spectrum of odd-order boson
couplings. The Rellich-Kato theorem implies that a
regular perturbation on a spectrum bounded from
below, must also have a lower bound. The nonanaly-
ticity we find also applies, however, to potentials of
the form +gx* which do have a lower bound. The
nonanalyticity for +gx* derives, however, from the
lack of a lower bound for —gx*, as suggested by
Dyson.1?

There are a number of further suggestions and
implications of this result which are of interest. First
of all as to method. This problem was studied via the
creation-annihilation operator formalism. It is also
related to other methods in the theory of differential
equations, which have not been exploited. Thus by
going over into the momentum representation
X = id|dp, the Schrodinger equation for a poly-
nomial potential becomes in the neighborhood of
g = 0 a singularly perturbed equation, i.e., one where
the perturbation changes the order (i.e., the order of
the highest derivative) of the equation. The machinery

12 G, Baym, Phys. Rev. 117, 886 (1960).
18 F, J. Dyson, Phys. Rev. 85, 631 (1952).
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of such problems is not familiar to the author, but
such machinery exists and may lead to further
information on the structure of such theories. In
another approach the variable change X = £ can
be made, leading to a strong singularity in the neigh-
borhood of the origin. Some of the methods applied
to singular potential problems may be applicable.
Thirdly, the traditional WKB method should be
applicable, and such an investigation will appear in a
separate article.

The considerations of the Rellich-Kato theorem
that | V|| is never smaller than || H,|, lead one to look
at the problem as if H, were the perturbation on V'
suggesting a convergent expansion in negative powers
of g. This phenomenon of “analyticity flip” has
been noted by the author in connection with a field
theory model.# One in fact finds from the WKB
approach that this is true. The results will be reported
separately.

The original motivation for this problem was to
show that the oft-derived divergences of the per-
turbation expansion for multiboson interactions
(e.g., ¥® has nothing whatsoever to do with field
theory. In a field theory, infinitely many oscillators
are anharmonically coupled, while we see that the
anharmonic coupling of one single oscillator is also
not analytic in the coupling constant. The divergence
of various other field theory models? derives from the
considerations presented here. The analyticity flip
which follows from other arguments very likely applies
to these field theory models and suggests a search for
construction of solutions of such field theories via
strong coupling approaches.
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Assuming that the group E, obtained by combining the Poincaré group P with.a general internal
symmetry group S, has a direct-product-like structure as occurs in the McGlinn theorem, the conditions
for the existence of an isomorphism of E with a nontrivial semidirect-product-like structure are examined.
It is found that a nontrivial double structure can exist if and only if S contains an internal Lorentz
group L, P or their covering groups L, P. Mass splitting then occurs if the Poincaré group of the semidirect-
product-like structure is identified as the physical space-time group.

1. INTRODUCTION

HE problem of combining the (proper ortho-
chronous) Poincaré group P with an internal
symmetry Lie group S to form a larger Lie group E
has been considered by many authors'-2 who reached
the conclusion that under rather general conditions
& is the direct sum
E§=8+17, (1.1
where ¥, 8, and & are the Lie algebras of P, S, and E.

It was then concluded that the mass operator
m? = p,p*, where p, is the four-momentum, must be
degenerate within an irreducible representation of E,
which then cannot contain particles of different mass.

However, it is quite possible that the & given by
Eq. (1.1) might also be isomorphic to a nontrivial
semidirect sum with 8 as the ideal (invariant Lie
subalgebra), i.e.,

E=8+T=8@07,
where
F' =7, (1.2)
This might give rise to mass splitting, if one identifies
¥’ with the physical Poincaré Lie algebra.

The possibility of double structure for & was
considered by Ottoson, Kihlberg, and Nilsson?
(OKN) for the case of 8 semisimple and compact.
OKN and Kihlberg? discuss the possibility of mass
splitting arising from double structure.

In this article we consider the problem of double
structure of E for the case of a general internal
symmetry group S, from a global point of view.

* Present address: Department of Physics, Boston University,
Boston, Massachusetts.

t Present address: The Niels Bohr Institute, Copenhagen,
Denmark.

1 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); F. Coester,
M. Hammermesh, and W. D. McGlinn, Phys. Rev. 135, B45i
(1964); M. E. Mayer, H. J. Schnitzer, E. C. G. Sudarshan, R.
Acharya, and M. Y. Han, ibid. 136, B888 (1964); C. W. Gardiner,
Phys. Letters 11, 258 (1964).

? E. C. G. Sudarshan, J. Math. Phys. 6, 1329 (1965).

3 U. Ottoson, A. Kihlberg, and J. Nilsson, Phys. Rev. 137, B658
(1965).

¢ A. Kihlberg, Nuovo Cimento 37, 217 (1965).

In Sec. 3 we find the condition under which a
nontrivial double structure can exist. This condition,
as given in Theorems A and B, is that § > L, L, P, or
P, where L is the Lorentz group and L, P are the
covering groups of L, P, i.e., that S contains an
internal Lorentz or Poincaré group or their covering
groups, all of which are noncompact.

In Sec. 2 we review the theory of group extensions
needed in Sec. 3.

In'Sec. 4 we give in Lemmas A and B, the conditions
for the double structures to be of physical interest.

In Sec. 5 we analyze the double structures and
find in which cases they give rise to mass splitting.

In Sec. 6 we discuss in some detail the articles in
Refs. 24 in order to clarify them. We point out that
Theorems A and B rule out the possibility for a
nontrivial double structure for the case of compact S,
which is the problem considered in Refs. 3 and 4.

Finally, in Sec. 7 we discuss a simple example of
nontrivial double structure.

2. GROUP EXTENSIONS

We first need some mathematical formalism from
the theory of group extensions.

Definition: E is a group extension of Q by X, if K
is an invariant subgroup of E, i.e., if K <] E such that
the factor group

E/IK~ Q.
Let
:G,— G, or G5 G,,

denote a single-valued mapping (but, in general, not
a homomorphism) of a group G, into a group G,
and let

0:G,— G, or (511»62

denote a homomorphism 0 of G, into G,, and let
Im 6 and Ker 6 denote the image and the kernel of 6,
respectively.
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/

()

AN
/—’“*K_—>E R —>/

bz

| == 20K > hb K —>Gub— /
Fic. 1. Group extension diagram.
Definition: A sequence of homomorphisms

H Tisy
Gia G; G >,

is exact if
Imf;=Ker f,,; Vi
An extension E of Q by K can then be symbolized
by the exact sequence
1-K—E—->Q—1,
where 1 denotes the trivial group of only one element.
This exact sequence can be implemented to the
usual group extension diagram of commutative exact
sequences (see, e.g., Ref. 5) shown in Fig. 1, where
C(K) is the center of K, Aut K is the group of auto-
morphisms of X, In K and Out X the groups of inner
and outer automorphisms of X, and #isa 1:1 mapping
(not a monomorphism) such that

foh=1
the identity homomorphism.
The group extension problem is characterized by a

triple (@, K, g: @ — Out X)) and can have none, one
or more than one solution E for a given triple.

Definition: The extension is central if g: @ — Out K
is the trivial homomorphism of @ onto the unit
element of Out X, i.e., if g = 0.

For a central extension the group extension
diagram of Fig. 1 reduces to the diagram shown in
Fig. 2, where the mappings ¢ and 4’ are defined later.

In Fig. 1 the mapping / defines, by the equation

h(g)h(g) = (g1, 99M(q:92),
the factor system w(q, , ¢5) of & which fulfills
w(ql ’ qﬁ) € K’
w(Qn 1) =l= w(ls 9'2):
and
(g1, gD{@qz: 98) = i[0(q2, g)l0(gr, gog5), 2.1
where
qlk] = h(g)sh(g).

5 1. Michel, in Brandeis Summer Lectures in Theoretical Physics
1965 (Gordon and Breach Science Publishers, New York, 1966).
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The elements e of E can be written as the ordered
pair e = (k, ), where k € K and g € Q with the group
multiplication law

k1, g)(ka, q2) = (kqilkelo(qy , 2), 1g2).  (2.2)
In the case when E is a central extension, /# can be

chosen (see, e.g., Ref. 5) such that Eq. (2.2) takes the
form

(ky, g ks, g2) = (kika0(q1, 92), 1192),

where
(q1,92) € C(K)

2.3)

and fulfills

(1, §)(q1q2 5 Gs) = ©(q3, 92)0(q1 , Gogs)- (2.4)
In the case when E is a semidirect product, 4 can
be chosen such that

w(ql 3 q?) = 1’
i.e., such that Eq. (2.2) takes the form
(ky, ks, g2) = (agulks,), 01q2)- 2.5

For the case when E is a direct product, 4 can be
chosen such that Eq. (2.2) takes the form

(k1 %)(kz » qz) = (kik,, 9192)-
3. DOUBLE STRUCTURE

1. Corresponding to § given by Eq. (1.1) we have
globally either the direct product

(2.6)

E=SxP, (3.1a)
or the direct-product-like structure
E = (S x P)|C,. (3.1b)

Here C, is the cyclic group of order two whose
elements are [1, (0, 1)] and [§, (0, — 1)}, i.e.,

C2 = {[1’ (0’ 1)]; [5’ (09 _1)]} < 8§ x P,
where

0, - el
Also
E=1,
ie.,
E € ZC(S)a

the subgroup of C(S) of elements of order two. Equa-
tion (3.1b) includes, for £ =1, the case E = § X P.

&
A\2L
/ A E:/ﬁ >0~———-
zl L,l,,\ldii

| ——>C(4) Ve 3

/

‘,/’

>k

|

!
Fig. 2. Diagram of a central extension,

~/
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The E given by Eq. (3.1a) is a covering group of the
E given by Eq. (3.1b).

The global statements of double structure corre-
sponding to the Lie algebraic equation (1.2) are that
the E defined by Eq. (3.1a) be isomorphic to a non-
trivial semidirect product with S <1 E

E=SxP~SRrP, (3.2a)
where
E/S~ F' ~ P, (3.3a)
or that the E defined by Eq. (3.1b) be isomorphic to a
nontrivial semidirect-prcduct-like structure.

E= (S x P)|C,~ (S ® P")/C,, (3.2b)
where
E|S~P'|C,~ P'~ P~ P/C,. (3.3b)
Here
C={[1LO, DL [£,0, -]} = Sr P,
where

& € ,C(S).
Equation (3.2b) includes, for £ = 1, the case
E=SxP~(SxP)C,
and, for & = 1, the case
E= (S x P)/C,~S xR P
2. From Egs. (3.3) and from the definition of a
central extension or from Eq. (2.3) it is clear that
E given by Eq. (3.1a) or by Eq. (3.1b) is a central
extension of P or P, respectively, by S. In order to
find the conditions under which the double structures
(3.2) exist, we therefore rewrite the group multi-
plication law (2.3) of a central extension.
Let us consider an arbitrary mapping
t:0--—Kk,
as shown in Fig. 2. Then
1(qV1(g2) = ©(q1, 92)H(q:92)
= w'(q1, 92)0(q1, 9 1(9:92)

= 0'(q1, QgD 0(q1,92)7Y,  (3.4)
which defines @(q, , ¢,) and where
@'(q1, 42) = B(q1, g)0(q1, 4a)- (3.5

We now map the elements (k,q) of E onto
(k, q)' = (kt(g), q). Defining
qlk] = t(gku(g)™
= Hgh(Q)kh(g)t(g)™
= K (Qkk (™
we get for the multiplication law (2.3) of the central
extension using Eq. (3.4)

(WA NEST CUOAND (X CAYD
= (kyt(qDkat(q2)0(41 , 92), §:192)
= (kut(qDkst(3)71(gD1(9)(q1 » 92); 9:92)
= (kuqr[kalw' (g1 , 92)t(q1q2), 7192)

= (k1qalks)w' (41 » 99), 0195)'s (3.6)
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where we now only have to show that w'(q;,qs)
fulfills Eq. (2.1).
From Eq. (3.4) we have
q1[D(q2 , 4)10(91 , 4295)
= H(q)1(92)1(95)1(9293) " 1(q1) 2 1(91)1(9295)(9:19295) )
= H(q)H(g2)1(9:92) " H§:19)1(98)1(919295) "
= (4, 9)0(4:192 » 95)-
From Eqgs. (2.4) and (3.7) it then follows that

1[0’ (92, 45)10' (415 4293)
= ¢,[0(q2 , 3)1g:[(q2 , §3)10(g1 » 9293)0(q1 , 9295)
= q:[B(q2, 99)]0(g2 > §3)D(q1 > 9299)D(G1 » 9295)
X (g1, 9295
= ¢,(®(g2, 92)15(q1 , 9299)0(q2 , §8)0(q1 , 9295)
= @(q1, 92)0(9192 , 98)0(q1  §2) (192  93)
= &(41, §2)0(q1 , 42)D(4:92 , 98)X(§19z2  Gs)
= (41,90 (q:92, 93)
which proves our point.
3. For the E given by Eq. (3.2a) we see that

(3.7

Q=P K=3S,
while from Egs. (2.6) and (2.3)
w(py, Ps) =1
and from Eqgs. (2.5) and (3.6)
o'(Py, P2 = L.
Hence from Eq. (3.5)
o(p1,p) =1,

and it follows from Eq. (3.4) that ¢ is a homomorphism.
Since the only proper invariant subgroups of P are
the translation group T, and C, = {(0, 1), (0, —1)},
it follows that t(P)=1, L", L", P", or P’, purely
internal groups isomorphic to 1, L, L, P, or P,
respectively. We therefore have the following condi-
tion for double structure for E.

Theorem A: Let
E=SxP
Then
Ex~SwbP', P~P
if and only if there exists
t:P—>S, t#0,
ie,ifandonlyif §> L",L", P"or P"~ L, L, Por P,
respectively.

The theorem can be illustrated by the diagram
shown in Fig. 3:

We notice that there exists a homomorphism
JjiP—InS.

When we turn to the E given by Eq. (3.2b) we have

Q=P K=S,
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P —

Fic.3. E=Sx PxSRP.
while from Eqgs. (2.3) and (3.6)
w(Pl ,Ps) € IC(Sr)’ w'(Pl ’PS) € 2C(S)'
Hence from Egq. (3.5)

(‘_'(Pl ’PS) € ZC(S), (3'8)
and it follows from Eq. (3.4) that ¢ is not a homo-
morphism.

However, from Egs. (3.4) and (3.8) we have
(poH(pIst(p)t(p)?
= &(py1, pIU(pPpISt(prp(p1> po)
= U(p,pIst(p1pa) ",
and hence there exists a homomorphism j shown
below in the diagram of Fig. 4,

j:P—InsS,
such that
j = jot
where i is defined by
1>C)—>S>InS—1.

From Egs. (3.4) and (3.8) it also follows that there
exists a homomorphism,

i:P—>S,
(0, —1)) € ,C(S),
and hence such that
{P)(p) = (Pt = O)B) € ,C(8),
where Z is defined by
1->C—>P5Hpoi.

It now follows from Eq. (3.9) that

Hp)st(p)™ = (¢ E)P)sl(t © YD) = #(B)si(p) 7,

such that

3.9

§
! S E‘h_'_ P—— |
1 | 4
J
| c(s) S InS —=1 |I
t
1 Cy P P 1

Fic. 4 E= (S X P)/Cy=2 (S ¥ P)/CL.
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ie.,
Jel=iotol=iol,
so that we have a commutative diagram which is
shown as a part of the diagram in Fig. 4.
We now have the following condition for double
structure of E in this case.

Theorem B: Let
E = (S x P)|C,,

where
Co={[1,(0, D], [ O, =D}, £&e.C(S).
Then
Ex (SR P)/C;, P'~P,
where

Ce = {I1, (0, D, [¢", (0, = D]}, & €,C(S),

if there exists 1P — S, f # 0, i.e., if S> L, L', P”,
or P"=~ L, L, P, or P, respectively, such that

(0, —1)) = £& €,C(S).

We see that in both cases the condition for double
structure is that S > L’, L", P”, or P”.

4. PHYSICAL CONDITION ON DOUBLE
STRUCTURE

If we want to obtain mass splitting from double
structure, it is clear that P (or P) which occurs in the
direct-product-like structures of Egs. (3.2) and (3.3)
cannot be identified with the physical Poincaré
group. We therefore identify P’ (or P’) with the
physical Poincaré -group, while P (or P) describes
a nonphysical Poincaré group.

In any theory of interest to particle physics we must
ensure exact conservation of the generalized charges,
i.e., the electric charge, the baryon, electron and
muon numbers, etc., a condition used as a basis for
the articles of Refs. 2—4. It follows that the homo-
morphisms ¢ and { must satisfy the following
mathematical conditions, as seen from Eq. (3.6).

Lemma A: The double structure
E=SxP~SxgP
is of physical interest if
Plssl =350 VPEP Vs€8,,
t(P) = Cy(Sy),

where S, is the subgroup of S generated by the charges
5, and where Cg(S,) is the centralizer of Sy in S.

ie., if

Lemma B: The double structure
E = (S x P)[Cy= (S ® P')[C;,
is of physical interest if
plsol =8y VpeP Vs, €8,
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ie., if
#P) = Cg(So).

5. MASS SPLITTING

We analyze the double structures given in Eqs. (3.2)
in view of Theorems A and B to see whether or not
they can give rise to mass splitting.

Since the mass operator is given in terms of the
four-momentum we return to the Lie algebras and
Eq. (1.2). The generators of the physical Poincaré
group are then

pi=p+ peT,
where p; €T are the generators of the nonphysical
Poincaré group, and the
P =1p)eS,
are purely internal. In particular we have
[pi,s5,]=0.
For the physical mass operator we have
M"=P"=(P +pR =pt+42p-p° +P°2
=m!+2p p° + m". (5.2)
There are now two main cases to consider.
(1) §> L" or L” but S » P” or P". In this case

P2=0s

.1)

and hence
m'? = m?
Since m? is the Casimir operator of P it follows that
[mlz’ Pi] pa— 0
and from Eq. (5.1) we have
[m%s5,] =0,

and hence there is no mass splitting.

(2) § = P’ or P". In this case p% 7 0. In a given
representation of E we now have the following
possibilities :

(@) p, # 0 and p§ # 0. We then have from Eq.
(5.2)
[m2,1,,] %0,

where I, €L < T are the generators of the non-
physical Lorentz group, and
[m, 1,1 # 0,

i.e., m’2 transforms under both the nonphysical and
the purely internal Lorentz transformations, so that
there is mass splitting. However, a theorem by
O’Raifeartaigh® shows that there can be no mass
splitting in a given representation of E if the mass
operator in this representation has a discrete point in
its spectrum. Thus if there is any mass splitting, as in

¢ L. O’Raifeartaigh, Phys. Rev. Letters 14, 575 (1965).
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this case, it must be continuous and can only have
physical application in a theory with a continuous
mass spectrum.
(b) p, = 0 and pf 3 0. Now
m't = m,

From Egq. (5.1) we then have

[m’®, p] =0,
but in general

[m'% s,] # 0,

since m®" is not in general a Casimir operator of S and
we get in general a continuous spectrum of m'
as in Case (a).

(©) py =0. We are here back to Case (1) and
there is no mass splitting.

6. DISCUSSION

In Refs. 24 the problem of combining § with 8 is
considered for the case when § is semisimple and
compact, and a semidirect sum, which might be
trivially a direct sum, is obtained for §

b= 8@, (6.1)

as a result of the conditions on a generalized charge
which we discussed in Sec. IV.
The commutations relations of Eq. (6.1)
[sp ’ sa] = c;a'sr ’ sp € 81
[pis pil = ciipe> Pi€T,
and
[pis s,] = ¢{,8,5
are explored, and it is shown that there exists a set of
10 linear combinations p{ of the s,
p) = bfs,,
such that
[p!, 5] = €ips, (6.2)
Furthermore, the p? satisfy the Poincaré Lie algebra

I HERA 2 (6.3)
The quantities
pi=pi—p!
also satisfy the Poincaré Lie algebra
[p:» Ps] = C:'cjpk,
and furthermore
[piis,]1=0,
so that the double structure, which might be trivial,
=8§®MI' =847,

has been obtained.

It does not appear to have been clearly noticed that
the necessary and sufficient condition for the existence
of a solution p? to Eq. (6.3) is that, corresponding to
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our Theorems A and B, there exists a homomorphism
t:§' — 8,

The 10 p? are linearly independent if and only if # is an

isomorphism.

In Refs. 3 and 4 the problem of nontrivial double
structure is considered. However, since the only
homomorphic images of J’ are #@) =0, £" or
3"~ 0, £ or J, respectively, and a nontrivial double
structure excludes #(3’) = 0, we must in such a case
have #(J) =L" or §” < §. These purely internal
Lorentz or Poincaré Lie algebras are noncompact,
which clearly excludes the possibility of nontrivial
double structure for § compact, the case considered
in these articles.

In Ref. 2, Sudarshan proves for 8§ compact that in
all unitary representations of & no nontrivial double
structure can exist. We have now generalized this
theorem and shown it to be true in a/l representations
of & for § compact.

7. EXAMPLE OF DOUBLE STRUCTURE

In this section we consider a simple example for §
which gives rise to double structure which is at first
sight in apparent contradiction to our theorems.
Though this double structure does not give rise to
mass splitting we do believe that the discussion and
resolution of the paradox throws some light onto
attempts in the literature to obtain mass splitting.

We for § take the compact group SO; or its covering
group SU, with the Lie algebra’

80; ={K,}, «a=1,2,3,
with the well-known commutation relations
(K, , K] = it,5,K, .
For the Poincaré group P or P we have
§ = {pude, Ny #=1,2,34,
with commutation relations,
VAT
Ve, Ngl = i€, N,
[N, Ngl = —ikpp,J,.
The combined algebra
§E=8+417,
is then described by
[Pu; K] =0, [J.,Ks]=0, [N,,K;]=0.
The quantities,
Py = Dy>
J.=J,.+ K,,
N,= N, + iK,,

(1.1
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close upon themselves with the following commu-
tation relations:
[Jas gl = ifapydys
[Jas Ngl = i&ep) Ny,
[Nas Ngl = —ikep,d s

and hence constitute a Poincaré algebra §’, which we
consider as the physical one. The commutation
relations of P’ with 89, are

[P;:, K] =0,
[‘Ic’z’ Kﬂ] = igaﬂyKya
[N;, Kﬂ] = iéapyiKy,

which then indicate that & is isomorphic to the semi-
direct sum of §’ with 80,

This is in apparent contradiction to our remarks
in Sec. 6 of the impossibility of obtaining a double
structure for § compact!

The clue to the resolution of the paradox lies in the
i in the term iK|, of Eqs. (7.1) and (7.2) which indicates
that we are not dealing with 80, over the field R of
real numbers, i.e., 8O(3, R), as we started out by
saying, but rather with 80, over the field C of complex
numbers, i.e., 893, C).

Furthermore, one has committed an error by
combining the Lie algebra § over R with the Lie
algebra 8O; over C. In order to do things in a
formally more correct manner we therefore have to
put 80(3, C) in the form of a Lie algebra over R by
doubling the number of generators, i.e., by defining

M, =ik,.

The commutation relations of 8O(3, C) over R then
become

(1.2)

[Ka H Kp] = iEap'yKy s
[Ka’ Mp] = ifaﬁyMy ’
M,, Mg] = —i,4K,.

(7.3a)
(1.3b)
(1.30)

Equations (7.1) and (7.2) become
N.=N.+ M.,
[Na, H Kﬂ] = ifapyMy ’

which now are in a real form.

We now see from Egs. (7.3) that
8§ =80(3,C)~80(3,1;R) =¢, .4

so not only was the original 8 not compact, but we
also have our homomorphism ¢

g 80(3,1; R) 0,

as required by the theorem!
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Equation (7.4) corresponds globally to
S0(3,C0) = SO03,1;R)=L

SUQ2,C)=~ SL(2,C)=L
Note added in proof: Our attention has been drawn
to the following two articles where the problem of
double structure is also considered: J. Roskies, J.
Math. Phys. 1, 395 (1966); G. Cologna, Nuovo
Cimento 41, A603 (1966).

or
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When the space-time coordinates of a relativistic system undergo the transformations of the proper,
orthochronous, inhomogeneous Lorentz group, the wavefunction of the system un transforma-
tions which may be considered to constitute a representation of the group. We give a simple algorithm for
reducing this representation to the irreducible unitary ray representations if we assume that only nonzero
mass representations occur. The extension to cases in which zero mass representations occur will be given
in a later paper. The form in which the reduction is given is an expansion of the wavefunction as given
in configuration space in terms of a basis such that the coefficients transform in accordance with the
Foldy-Shirokov realization of the irreducible representations. Any wave equation which the wavefunction
satisfies and any auxiliary conditions, such as the Lorentz condition or reality conditions, eliminate or
relate in a simple way some of the representations which can appear. As examples, we reduce the scalar
wavefunction, the four-vector with and without the Lorentz condition, the Dirac wavefunction, the
wavefunction which transforms like the electromagnetic field, and a wavefunction which transforms as
a generalization of the Dirac wavefunction. In these examples it is also shown that if one replaces the
amplitudes associated with the irreducible representations by annihilation and creation operators in a
suitable manner, one obtains the usual canonical formalism for second quantization in configuration
space. The reduction technique given herein is a simple application of the results of an earlier paper by
the authorand J. S. Lomont in which is shown how to reduce any unitary ray representation of the inho-

mogeneous Lorentz group.

1. INTRODUCTION

N Ref. 1 a recipe was given and proved which
enables one to reduce any unitary ray repre-

sentation of the proper, orthochronous, inhomo-
geneous Lorentz group. The present paper is a simple
application of Ref. 1 and is, in a sense, an extension
of it.

In the present paper we consider a set of functions
W(x, t, ) where the variable y runs through a set of
discrete or continuous values. At times it is convenient
to suppress the variable y and write ¥(x, ) =
{¥(x, t, y)}. If v is a discrete variable, it is also useful
sometimes to regard ¥(x,r) as being a column
vector with components ¥(x, ¢, ¥).

* Operated with support from the U.S. Advanced Research

Projects Agency.
1], S. Lomont and H. E. Moses, J. Math. Phys. 8, 838 (1967).

We wish to regard ¥(x, 7) as being a wavefunction
which transforms by means of a unitary transformation
to another function W¥'(x,7) when the space-time
coordinates undergo any transformation of the
proper, orthochronous inhomogeneous Lorentz group.
These transformations form a ray representation of
the group and we can use Ref. 1 to reduce these
functions to the irreducible representations of the
group. In the present paper we restrict ourselves to the
case where only nonzero mass irreducible repre-
sentations appear. In the next paper we consider zero
mass representations.

An ecarlier paper on the reduction of wave-
functions of nonzero mass is Ref. 2. We believe that
our technique for the reduction, in addition to being

* D. L. Pursey, Ann. Phys. (N.Y.) 32, 157 (1965).
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* D. L. Pursey, Ann. Phys. (N.Y.) 32, 157 (1965).
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more general, is simpler and more suitable for
applications.

We present our result in the form of a simple
algorithm which allows us to expand ¥(x, #) in terms
of amplitudes which transform according to the
Foldy-Shirokov®** realization of the irreducible
representations of the group in the momentum
representations.

It is to be noted that to reduce the wavefunction,
only the transformation properties are necessary.
While the requirement that V" satisfies a wave equation
may determine the transformation properties of the
function (that this is not always the case can be seen
by noting that both the components of four-vector
wavefunction and the scalar wavefunction can be
required to satisfy the ordinary wave equation), the
wave equation is not otherwise used to reduce the
wavefunction. The effect of the wave equation is to
restrict the number of independent irreducible
representations which appear—for example, by per-
mitting only one mass. Auxiliary conditions, such as
the Lorentz condition, in the case of the four-vector,
or reality conditions further eliminate or relate in a
simple way some of the irreducible representations.

Finally, we also show how the negative energy
representations may be replaced by positive energy
representations (i.e., how to introduce “antiparticles’)
and, if the wavefunction satisfies a wave equation,
how second quantization is to be introduced to agree
with the canonical formalism in configuration space.
Though we carry out the second quantization in
some special cases only, we feel that the general
procedure can be deduced from the special cases.

We reduce the following wavefunctions as illus-
trations of the procedure (a) the scalar wavefunction,
(b) the wavefunction that transforms like a Dirac
spinor, (c) the four-vector with and without the
Lorentz condition, (d) a wavefunction that transforms
like the electromagnetic field, and (e) a wavefunction
which transforms as a generalization of the Dirac
spinor.

2. ALGORITHM

It is convenient to regard any transformation of the
proper, orthochronous, inhomogeneous Lorentz group
as a product of three particular transformations.
Let x*(a = 0, 1, 2, 3) denote the components of the
space-time four-vector with x® = —x, = t, x! = x,,
x% = x,, X3 = x,. We take i = ¢ = 1 in our units.

The first transformation is a translation T(a%)
characterized by the four-vector ¢* in which the

3 L. L. Foldy, Phys. Rev. 102, 568 (1956).
% Yu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 33, 1196 (1957)
{English transl.: Soviet Phys.—JETP 13, 240 (1961)).
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components of the x* four-vector in the new frame of
reference are given by

A

x*=x*—a" 2.1
The second transformation is a rotation R(8)
where the direction of the vector @ gives the direction
of the axis of rotation and 6 = |0] gives the angle of
rotation. Under the rotation R(6) the four-vector
transforms in the following way:
xll) = xo,

x'=xcoso+1—:;;’—so(o-x)o—§’—‘3—a(0xx),

2.2)
where x is the space part of the four-vector x4, i.e.,
x = {x;, X3, X3}-

The third transformation is the pure Lorentz
transformation L(B) where the direction of § is in
the opposite direction of the moving frame of reference
as observed in the original frame and the magnitude
B = |B| is given by cosh 8 = [1 — v2]-}. Under the
transformation L(f3) we have
x'® = x%cosh # + B - x(sinh g/f),

X' = x + B(B - x)[(cosh § — 1)/#*] + Bx*sinh B/B).
(2.3)

It is convenient to use the concept of column
vector to describe the four-vector x*. Accordingly, let
the column vector x be defined by

x?

24)

Let us also define the three matrices M, and the
three matrices N; (i = 1, 2, 3) by

(0 0 0 0\
. 0 0 0 ©
M=Ys o o =i
\0 0 i 0)
(0 0 0 o\
) 0 0 0 i
=1, 0 o ol (2.5)
\0 - 0 o)
/0 0 o 0\
oo 0 0 —i © ’
0 i 0 0
\o 0 o)
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0 —i 0 0
—i 0 0 0
N1= 3
0 0 0 O
0 0 0 0
( 0 0 —i o\
0 0 0 o0
N, = , 2.
: —i 0 0 26
\ 0 0 0 o)
( 0 0 o0 —i\
0 0 0 0
Na= .
0 0 0 O
\—i 0 0 0)

Then the transformation T(¢®) can be written in
terms of column vectors as

xX=x—-a, (2.1a)
while the transformations R(0) and L(B) can be
written in terms of matrices as follows:
x' = exp [i0 - M]x, (2.2a)
x' = exp [ip - Nlx. (2.32)
In (2.22) and (2.3a) 6 -M = >, 6,M, and B-N =
zi ﬁ t'N £*

It is also convenient to write (2.1a), (2.2a), and
(2.3a) as follows:

x' = T(a)x, (2.1b)
x' = R(®)x, (2.2b)
x' = L(B)x. (2.3b)

As used in (2.2b) and (2.3b) R(8) and L(B) are
matrices which should not be confused with the
abstract transformations though the same notation
is used.

We note here for later use some properties of M,
and N,. As is well known the matrices M; and N,
satisfy the commutation rules of the infinitesimal
generators of the proper, orthochronous, homo-
geneous Lorentz group, namely,

[Mqu] = izk:eijkMkf
[Mn Nj] = igeijkﬁk,
[N;, Nj] = —igeijkMky

where ¢, is the usual antisymmetric three-index
symbol.

2.7
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We notice also that the matrices M, by themselves
satisfy the commutation relations for the infinitesimal
generators of the rotation group. In fact, the matrices
M, appear in reduced form. Let us define the
matrices $; by

0o 0 O 0o o0 i
$;=]0 0 —i}, S, = s
0o i 0 —i
0 —-i O
S5={i 0 o (2.8)
o 0 0

The matrices S; constitute, as is well known, the
irreducible representation of the generators of the
rotation group corresponding to vector rotations.
Let us denote the trivial one by one-dimensional
representation of the generators by S. Then, of
course, §; = 0.

The matrices M, take the reduced form

i S 0

7\o s/

We now consider the way that the wavefunctions
change under the transformations of the inhomo-
geneous Lorentz group. Let us denote by ¥(x) the
wavefunction which we have denoted in Sec. 1 by
W¥'(x, 7). Let us denote the wavefunction in the new
frame of reference after any transformation of the

inhomogeneous Lorentz group by ¥'(x). Under the
transformation 7(a*) we require

¥'(x) =¥(x + a). (2.10)

Under the transformations R(8) and L(f) we require
¥(x) = exp [i0 - MTY'(R(—0)x), 2.11)

¥'(x) = exp [if - NTP(L(—B)x),  (2.12)

where M; and N, (i = 1, 2, 3) are operators which
operate on the y variable of the wavefunction written
as ¥'(x, ¢, y) as in Sec. 1. We require that the matrices
M; and N, satisfy the commutation rules for the
infinitesimal generators of the homogeneous Lorentz
group (2.7) and also that they be integrable in the
sense that exp [/0 - M] and exp [i « N] exist and that
they can be used to generate a ray representation of
the homogeneous Lorentz group in an obvious way.

The transformation requirements which we have
put on the wavefunctions are the usual ones which
are put on wavefunctions to characterize them as
being relativistically invariant.

2.9)
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In the usual cases of interest the variable y runs
through a finite set of values and, hence, the integ-
rability conditions on M; and N; are satisfied.
Furthermore, the operators M; which correspond to
the spin part of the angular momentum operators are
usually taken to be Hermitian. As is well known
from the theory of the homogeneous Lorentz group,
if the variable y runs through a finite set of values and
the matrices M, are Hermitian, then the matrices N;
cannot be.

If a suitable inner product is introduced—and we
later show that one can always introduce such an
inner product—the transformations on the wave-
function ¥ given by Eqgs. (2.10)—(2.12) form, locally at
least, a representation of the inhomogeneous Lorentz
group in a sense to be given now.

Let the operators P, = Pi(i=1,2,3) and P’ =
—P, = H be defined by the way that they act on the
wavefunction:

PY(x) = —i(@)ox)¥(x) (x=0,1,2,3). (213)

The operators P* are operators corresponding to
the momentum four-vector. Let us define the
operators J; which correspond to the components
of the angular momentum by

JE(x) = [—: S s aa + M, ]‘F(x)

G,j,k=1,2,3). (214

[In (2.14) and later i = (—1)? should not be confused
with the index i.]

Finally the operators which correspond to the
space-time portion of the four-by-four relativistic
angular momentum tensor

W (x) = [ (x 94y ax_.) + N{I‘I’(x). (2.15)

These operators satisfy the commutation rules for the
infinitesimal generators of the inhomogeneous Lorentz

group.
Let us define
Jy==Jp=J, Ju= —Jis =Js,
Jig = —Jy = Js. (2.16)
Ju=—Jp= &
Then

[P P’] =0, Vg > Pi]l = i[gaaPp — 8p:Pu)s
Wags Jaul = il8aatpu — 8paSay + 8anlip — g ia)>
.17
where g, is the metric tensor defined by g,; = 0 if
a7 B gw=—gn=—gu=—gu=—L
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It is easily shown that the wavefunctions trans-
forming under I'(a%), R(6), L(B) as in (2.10)—(2.12),
respectively, can be written

¥'(x) = exp [i 3, a*P,)¥(x), (2.10a)
W'(x) = exp [i0 - J]¥(x), (2.11a)
Y¥'(x) = exp [if - JTF(x). (2.12a)

Our observation that the commutation rules (2.17)
for the infinitesimal generators of the inhomogeneous
Lorentz group are satisfied by the infinitesimal
generators associated with the transformation of the
wavefunction ¥ is the starting point of our inves-
tigation to reduce these operators to the irreducible
representations of the inhomogeneous Lorentz group
using the techniques of Ref. 1.

We now discuss the Foldy-Shirokov form for the
irreducible representations of the inhomogeneous
Lorentz group for particles of mass u, spin s, and sign
of energy € (¢ = 31). For each representation there is
an irreducible set of spin operators S; such that
S% = s(s 4+ 1)1, where I is the identity operator. We
introduce a set of complex functions of a vector p and
a discrete variable 4 which runs through 2s + 1 values
and upon which the spin operators S; act. Denoting
a function of this set by f(p, 1) we introduce a norm

dp 2
[ 1w A
7 J w(y, p)
and a corresponding inner product, where
o, p) = [u* + p1E, p=pl.

We regard the set of functions {f(p, 1)} as consti-
tuting a representation of the states of a Hilbert space.
We denote the infinitesimal generators of the inhomo-

geneous Lorentz group by P=, J, ﬁ; [which, of course
satisfy (2.17)]. We have—on suppressing the 2
variable in f(p, 4) for simplicity—

P (p) = Af@) = e, p)S (D),
Fp) = p.S @)
0
Lf(p)=[ zze.,kp,a + sf}f(p),
(2.18)

— a7 1
5,50 e[zw(u Y v

x> e,,kp,sk]f(p).

[The carats used above the operators in (2.18) are
simply a notation and are not meant to imply in
general a relation of these operators to M,, N,, or

8]
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For the sake of completeness we show how the
function f(p), which may be regarded as a wave-
function for a particle of spin s, mass u, and sign of
energy ¢ changes when the frame of reference is
changed under the finite transformations of the
inhomogeneous Lorentz group. The transformations
for the wavefunction are analogous to those for ¥(x)
as given by Eqgs. (2.10)+(2.12) and (2.10a)-(2.12a).
They are given in Ref. 5.

For each three-vector p let us introduce a four-
vector p whose space components are the components
of p and whose time component p® is given by

P = ew(u, p),
=3 —Po,

We use the notation p, for the column vector whose
components are those of p.

Then denoting by f’(p) the wavefunction in the new
frame of reference, we have under the transformation
T(@)

7@ = exp [ 12 0P| 1) = exp [ 3 o o)
(2.19)
Under the rotation R(8) the wavefunction becomes
'@ =expi6- 3]/

—exp[0-SIf@),  (220)
where p' is the space part of the four-vector p’ given by
p. = exp [—i0 - M]p, (2.20a)

[cf. (2.2a)]. Under the space-time transformation
L(B) the wavefunction becomes

f'®) = exp [ip - 31/()

= exp {27' [(g x p) -S]w(p, pjs@) @21

where p’ is the space part of the four-vector p’ given
by

p: = exp [—ip - N]p, (2.21a)

[cf. (2.3a)],
k = {p* — [(B/B) - pIP} (2.21b)

and the function @ is given by
tan ®(B, p)
_ k sinh (36)

[z, p) + ] cosh (48) — <(B/B) - p sinh (3B)°
(2.21¢)

Let us consider the functions g(p) =f*(—p).

5 H. E. Moses, Ann. Phys. (N.Y) 41, 158 (1967).
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From equations (2.19)-(2.21) one can show that the
functions g(p) transform like f(p) but with € replaced
by —e and the spin matrices S; replaced by new spin
matrices §; with

S, = —S{,

where the asterisk means complex conjugate. That is,
the functions g(p) transform like wavefunctions of a
particle of mass u, sign of energy —e, and spin s using
the spin matrices S§; in the expressions for the
infinitesimal or finite generators of the inhomo-
geneous Lorentz group. Later, by using this theorem,
we are able to replace negative energy wavefunctions
in the expansion of ¥ by the complex conjugate of
positive energy wavefunctions, these positive energy
wavefunctions playing the role of “antiparticle”
wavefunctions. We are thus able to expand ¥ in
terms of ‘‘physical” wavefunctions only, ie., with
wavefunctions corresponding to particles having
positive energy.

In replacing negative energy wavefunctions with
positive energy wavefunctions it is sometimes con-
venient to use the original spin operators §; instead
of S;. Since the set of matrices {S;} correspond to the
same irreducible representation of the infinitesimal
generators of the rotation group as {S,} there exists
a unitary matrix U such that

Si == US‘U_I-

Let h(p) = Ug(p) where U acts only on the suppressed
/A variables in g(p). Then it is not difficult to see that
h(p) transforms like the wavefunction of a particle of
mass u, sign of energy —e¢, and spin s using now the
matrices S; in the expressions for the infinitesimal or
finite generators of the inhomogeneous Lorentz group.

It is our objective to expand ¥(x) in terms of wave-
functions f(p) belonging to various values of u, e,
and s. In this expression we require that if every
f(@) is replaced by Kf(p), where K is an infinitesimal
generator of the inhomogeneous Lorentz group, then
this expansion equals K'¥(x), where K is the corre-
sponding generator in configuration space. We have
thus reduced the set of infinitesimal tors
acting on the wavefunctions ¥(x). We can also
express our requirement in “integrated” form. Let
the frame of reference undergo one of the transfor-
mations T(a*), R(8), L(8). Then in the expansion we
replace f(p) by f'(p) given by one of the appropriate
formulas (2.19)-(2.21). With this replacement, this
expansion will equal ¥’(x) given by the appropriate
formula (2.10)(2.12). We now set up various defi-
nitions and conventions. First of all, we consider ¥(x)
to be given completely, as far as its transformation
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properties are concerned, when the matrices M, and
N; are given. By the conditions which we have given
on the spin operators M; these operators are com-
pletely reducible. We assume, to make matters as
simple as possible, that the matrices M, are given in
completely reduced form. If, then, ¥ were given in a
form in which the matrices M, were not reduced, we
should first change our basis in the variable y so that
the matrices M, are reduced. We then would also be
given the matrices N; in this basis. We note that yisa
discrete variable. We thus assume that the matrices
M, have the form

Sgl)
S{(z)

s® . (222

where S{" are a set of irreducible matrices belonging
to the rth block of this decomposition of M,. We
should mention that in many cases the matrices M,
are already given in the reduced form above. All the
examples which we treat later are such cases.

Let us now consider the matrix exp [—iv-N]
whose elements we write

{exp [—iv-N1},, .

Now, for each set of matrices {S{”} which appear
in (2.22) and for every value of u, ¢, p we define
a column vector y'"u,e, p,A) with components
17 | s €., A) by

1| p 0 A =f{exp[—iv-NI}, ., (2.23)

where A is restricted to values corresponding to the
columns in rth block of (2.22). Furthermore, the
vector v is related to u, €, p by

p= —eu(v[¥)sinhy, »=|v|, (2.23a)

from which

p = psinh», o(u,p) = pcoshy. (2.23b)

It is usually convenient to relabel 4 from 1 to
25 + 1 where s is the spin corresponding to the
matrices S{.

We can now state the principal theorem of the
present paper:

Let f®(u, ¢, p, ) be a function upon which the
infinitesimal generators act as given by (2.18) using
the spin matrices S{” acting on the variable 1 [which
is suppressed in (2.18)]; or equivalently let f (") trans-
form as in (2.19)(2.21) with mass u, sign of energy e,
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and spin matrices S{”, then the most general expan-
sion of the function W(x) in terms of the irreducible
unitary ray representations of the proper, ortho-
chronous, inhomogeneous Lorentz group is

o=yl

X x(')(.“’ &P, }')f(r)(.u’ &P 1)

x exp {i[p - x — ew(u, p)t]}, (2.24)
where M"(u,€) is an arbitrary measure in the
Lesbegue—Stieltjes sense.

We want to emphasize that (2.24) is a necessary
condition which reduces the infinitesimal generators
to the irreducible Hermitian infinitesimal generators,
which appear in the reduction. These can be con-
sidered as dynamical variables of particles of various
masses and spins, as defined in the Wigner sense.
Furthermore, since our theorem is a necessary
condition, the expansion (2.24) should be verified for
any particular case. In the cases which follow we
have verified the expansions, but we do not reproduce
the verification because of the length of proof and
because the reader can carry out the proof himself
without too much difficulty. [It should be mentioned,
however, that some computations which the writer
has made indicate that (2.24) may also be sufficient
for a complete reduction.]

Equation (2.24) is the principal result of the paper.
We prove it using the recipe for reducing reducible
unitary ray representations given in Ref. 1.

One of the more remarkable aspects of the result
is that the measures M"(u, €) is arbitrary, that is,
the transformation properties—though they are
frequently derived from the requirement that a wave
equation be invariant—do not determine which
masses and signs of energy appear. We see that the
wave equations restrict the masses and, in general,
eliminate some of the irreducible representations
which appear in (2.24). Reality and subsidiary
conditions also eliminate some of the irreducible
representations.

Equation (2.24) enables us to define an inner
product of two wavefunctions in configuration space
which is invariant under the transformations of the
inhomogeneous Lorentz group—such a definition
being usually difficult to give. Let us define the inner
product of ¥M(x) and ¥(x) by

dp

¥ ¥ =333 j AM (s, j 2

X fOu, e p, (4, 6 0, ), (2.29)
where M{"(u, €) are appropriately chosen measure
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functions compatible with the measure functions
My, €) of (2.24).

For the purposes of second quantization it is
usually convenient to work only with positive energy
representations. We make substitutions in accordance
with our earlier discussion in which we showed that
the complex conjugate of a positive energy wave-
function with reversed momentum transformed like a
negative energy particle. To describe this situation we
modify our notation somewhat.

Let us define

M(')(,u) - M(r)('u, +1)’ N(r)(lu) — M(r)(”’ _1)’
10, A = 1" +1,p, 4),
L, p, 1) = 3 1w, —1, —p, VLY,
=
Fusp, ) =7, +1,p, ),
h(r)(;u’ P’ }‘) == Z Ug.',il’f(r)*(,u) ""1, —P; }h,),

b

(2.26)

where the matrix U™ = {U{}} is the matrix which
takes S{" into S{" so that 4 transforms as a particle
of positive energy using the matrices S{” as in our
earlier discussion. Then (2.24) takes the form

¥ =33 f AM () f ;(—%3 27 By 2

X f%u, p, A exp {ilp - x — o(u, p)t]}
(r) dp (r)%
+§§de (mfw(w)c (1, A
X h'™(u, p, 2) exp {—ilp - x — w(u, p)]}-
(2.242)

Generally, we prefer to work with (2.24a) instead of
(2.24). We now proceed to discuss examples.

3. SCALAR FIELD

The case in which the wavefunction transforms as
a scalar is the simplest. Nevertheless, the treatment
of the scalar case serves as a prototype of the treat-
ment of wavefunctions which transform in a more
complicated way. Hence we go into the properties
of the scalar wavefunction in considerable detail,
despite the obviousness of some of the results.

(a) Reduction of the Wavefunction

For the scalar field the operators M, and N, of
Egs. (2.11) and (2.12) are zero and the variables y
and 4 do not appear at all. Also, the representation
label r is not needed and is dropped. Furthermore,
the column vectors which are generally noted by y‘”

H. E. MOSES

and (" are simply 1. Then Eqgs. (2.24) and (2.24a)
become

dp
¥ o dM(u, € P €
) g:j (u )fw(”’p)f(ﬂp)

X exp {i[p - x — ew(u, p)t] (3.1)
and
dp

W(x) = f AM () f A
x exp {il[p - x — w(u, p)t1}
o v

@

x exp {—i[p- X — o(u, p)1}. (3.2)
We work primarily with (3.2).

() Reality Condition

Let us see how reality conditions affect the repre-
sentations which appear. Let us require that ¥ be real,
ie., ¥(x) = ¥*(x). From the linear independence of
the exponents it follows that

AN(h(u, p) = dM(u) f(u, p).

Thus the reality condition essentially fixes the “anti-
particle” representative in terms of the particle
representative.

(3.3)

{¢) Wave Egquation

Let us now require that ¥(x) satisfy the wave
equation
[(@*/0r) — V2 + m?y(x) = 0, (3.4)

where m is the mass of the scalar particle. (We do not
assume the reality condition on y in the present
discussion.) In terms of the infinitesimal generators
this requirement is equivalent to

[H? — pPI¥'(x) = m*¥(x). 3.5

Let K be any of the infinitesimal generators. Then
KW¥(x) is obtained from (3.2) by replacing f(p) and
h(p) by Kf(p) and Kh(p), respectively, in (3.2). It
follows that (3.5) is entirely equivalent to

f dM(g) f w(i"p) @ — m)f (o p)

x exp {i[p + x — w(u, p)1]

+ f dN(w) f " Zp 5 (1* — mh*(u, p)

x exp {—i[p+x — ofu, p)t]} = 0. (3.6)

It follows that for f(u,p) and A(u,p) not to be
identically zero, the measure functions M(x) and
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N(u) must have a jump at # = m and can be constant
for all other values of x. That is,

dM(u) = Cou — m) du,
dN() = Dé(u — m) dp.

In (3.7) C and D are real positive constants.
Then (3.2) becomes

Y(x) = C f a—%f(p) exp {ilp - x — a(p)1]}

3.7

+D f c—(% h*(p) exp {—ilp - x — “’(1’()3’];

where f(p) = f(m, ), h(®) = h(m,p), and w(p) =
w(m, p).

It is easy to see that (3.8) gives the general solution
of the wave equation (3.5) so that our expansion in
terms of the uwunitary irreducible representations
completely solves the problem.

We can choose C and D so that the usual canonical
formalism in terms of Lagrangian and Hamiltonian
densities (see, e.g., Ref. 6) agrees with the particle
interpretation. Let H(x) be the Hamiltonian density
of the field which leads to the wave equation (3.5).
Let us define the energy of the field E to be

= f H(x) dx. (.9

It is easy to see that if L(x) is a Lagrangian density
which leads to a wave equation (without interactions),
—L(x) is also a Lagrangian which leads to the same
wave equation. Consequently if H(x) is a Hamiltonian
density, so is H'(x) = —H(x). Of course, H(x)
depends on the wavefunction V" which is a solution of
the wave equation. Our principle for choosing H(x)
or H'(x) is that we require E to be positive when ¥’
contains only one mode, i.c., when only one of the
functions f(p) or A(p) is not identically zero. When
we discuss nonscalar wavefunctions we use the same
principle for choosing the sign of H(x). That is, we
set all wavefunctions except one identically equal to
zero and choose H(x) for this mode so that E is
positive.

Let us first consider the case that y is complex. For
both modes [i.e., either A(p) = 0 or f(p) = 0] we can
choose H(x) to be the usual functional of ¥, namely,®

HEX) =VY*¥ + VI*. V¥ + mP*¥. (3.10)

Having picked H(x) for each mode, we now require
that E (which must now be positive) be the expectation

¢ G. Wentzel, Quantum Theory of Fields (Interscience Publishers
Inc., New York, 1949).
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value of the energy as viewed from the particle
picture for each mode. Thus (using subscripts on E
to designate the mode)

= f —= f*®w(p)f(p) for the mode h(p) =

E,= f 4P pvp)x(p)h(p) for the mode f(p) =
o(p)

(3.11)

The requirements (3.11) lead to the following values
for the constants C and D of the expansion (3.8):

C=D=()2nL (3.12)

We have thus obtained a rationale for the usual
formalism in the language of the reduction of the
scalar wavefunction in terms of the representations
of the inhomogeneous Lorentz group.

We define the expectation value of the total energy
when the state is a superposition of modes as being
E=E, + E,. In this case E corresponds to the
total energy of the field when W' is any solution of the
wave equation.

We can view the quadratic form which gives E as
being a sort of weighted inner product. It is now
natural to define the true inner product in configu-
ration space as

\Fl \I}' — P 1k P hl h*
¥, %) f LI + f ® (2 .

With this inner product the infinitesimal generators
of Egs. (2.13)~(2.15) are Hermitian in configuration
space. Clearly this inner product is invariant.

We could equally well consider real scalar wave-
functions ¥ in which case we should have to restrict
h(p) in the expansion (3.8) to satisfy the requirement

[cf. (3.3)]
Dh@) = Cf®)

and then use the Hamiltonian density corresponding
to the real field,

(3.14)

Hx) = ¥ + (V)2 + m?¥2]. (3.15)
Then we require that the energy
E= f H(x) dx
be also given by
E=[a1/@r (3.16)

We find that C and D have the same values as before.
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The. inner product of two wavefunctions is then
defined by

¥, ¥) = f P i@, (A7)
o(p)

(@) Second Quantization

We now indicate how the theory is to be second
quantized when ¥ satisfies the wave equation. The
second quantization is carried out by replacing the
amplitudes corresponding to the irreducible repre-
sentations by annihilation operators and the complex
conjugate of such amplitudes by creation operators.
Let us first take 1" to be complex. In the expansion
for the operators ¥ and ¥'* (the adjoint of V') given
by (3.8) we regard f(p) and A(p) as annihilation
operators and their respective adjoints, denoted by
[*(p) and h*(p), as creation operators. We take C and
D to be given by (3.12). Thus assuming Bose statistics,
we have the following commutation rules:

/@), f@)] = [F*@). f*(@)] = [A(®), A®")]
= [A*(@), *@)] = [f(@), A(@)]
= [/*®), k@)1 = 0, (3.18)

/@, f*@)] = [A®), 1*®)] = o(p)d@@ — p). (3.19)

It is easily shown that the operator ¥'(x, ) = ¥'(x),
Y#*(x, f) = ¥*(x) satisfy the following commutation
relations:

["F(X, t),IF(X', tl)] = [\'p*(x’ t),lF*(X’, t,)] = 0,

¥(x, 1), ¥*x',t)] = Dx —x,t —t), (3.20)

~where D(x, ¢) is the usual invariant function

D(x,t) = (2w)*sfwi;3 exp [ip - x] sin w(p)t. (3.21)

Of course, (3.20) are the usual canonical commutation
rules for a complex scalar field (see Ref. 6).

We should note that f*(p) is the creation operator
for a particle and A*(p) is the creation operator for
the “‘antiparticle,” both the particle and antiparticle
having positive energy and the same mass. The
particle and antiparticle are treated at the same level.

We can now give the unitary transformation under
which the operators ¥ and ¥'* transform when the
frame of reference is changed. Let 4 be any one of
the operators A, Pi = P,, J,, 4, acting on the repre-
sentatives as in (2.18) (with S; = 0 in the present case).
Let us define 4f(p) when f(p) is a destruction operator
as the result of the operator 4 acting on the variable
p in the operator f(p) in the same way as though f(p)
were a representative as in (2.18). The second
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quantized operator [A4] corresponding to the in-
finitesimal generator A is defined by

. dp - dp
Al = | £ x4 P g+ . (322
[4] f w(p)f () Af(p) + f ) @) 4r(P). (3.22)

It is easily seen that the second quantized operators
[H], [P}, [J.], [4,] satisfy the same commutation rules
as H, P, J;, §; [Eq. (2.17)]. The second-quantized
operators constitute representation of the infinitesimal
generators of the proper, orthochronous, inhomo-
geneous Lorentz group in the second-quantized
theory.

Let us consider the Lorentz transformation T(a%).
Then using the notation x = (¢, x) the operator ¥(x)
transforms to the operator ¥'(x), where

Y(x)=Y¥(x + a)
= exp {— i g a"[P,]:‘I’(x) exp {i 2‘: a‘[P,]}.

(3.23)

From (3.23) it can be shown that ¥ satisfies the wave
equation, as required.
Under the rotation R(6) the operator ¥ transforms
to ¥ which is given by
¥'(x) =V(R(—08)x)
= exp {—i0 - JI}¥(x) exp {i0 - J]}, (3.24)
where 8 - [J] = 3, 6,[/;1

Under the space-time transformation L(B) the
transformed operator ¥ is given by

¥'(x) = F(L(—B))
= exp {—iB - BY() exp (B- B, (3.25)
where B - [§] = 3 5.[3.). Equations (3.23)(3.25) are
proved using the well-known algorithm
¢4Bed = 3 (B, A} i' , (3.26)
n n:

where 4 and B are any two operators and {B, A}™ is
defined inductively by

{B, A}" = B, (B, A} = [{B, A}*™, A]. (3.26a)

Thus the second-quantized theory is also invariant
under the transformations of the inhomogeneous
Lorentz group, since unitary operators exist which
transform ¥'(x) in the required way under changes of
frame of reference.

Let us now discuss the real field from the viewpoint
of second quantization. In the expansion (3.8) we
consider f(p) to be a destruction operator as before.
The function A(p) is replaced by f(p) also. The
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constants C and D are given by (3.12). Thus ¥(x) is
a Hermitian operator. The annihilation operator f(p)
and creation operator f*(p) are required to satisfy
the same commutation rules as before, namely:

V@@ =0, [/@.f*@)]= o(p)@ - p).
3.27
The infinitesimal generators for the second-quantized
theory are obtained from those for the first-quantized
theory in a manner analogous to (3.22):

dp "
Al = | == @4/ (p)-
o{p)
With these infinitesimal generators, (3.23)~(3.25)
hold for transforming the Hermitian operator ¥
under changes of frames of reference.

(3.28)

4. WAVEFUNCTIONS WHICH TRANSFORM
AS AN ANTISYMMETRIC TENSOR OR
ELECTROMAGNETIC FIELD

In the present paper we reduce the antisymmetric
tensors or, what is equivalent, electromagnetic fields.
However, we do not require that wave equations be
satisfied and we do not introduce second quantization
in this section. We introduce second quantization
later when we derive such skew-symmetric tensors
from vector potentials.

(a) Characterization of the Wavefunction.
Transformation Properties

Let us first consider a real antisymmetric tensor
F*# = —F#*, We require that under the translation
T(a®) the components of the tensor F**(x) transform
to the tensor whose components are F*(x + a).
Furthermore, we require that F*# transform as a tensor
under the transformations of proper homogeneous
Lorentz group. It is convenient, though by no means
necessary, to introduce a wavefunction which is related
more directly to the electromagnetic field description
of an antisymmetric tensor. Accordingly we define

E,=F% (i=1,2,3),

Hl . Fn’ Hz p— Fal, H3 — (4.1)

F2

We now introduce a column vector ¥(x) with

components ¥(x, ¢, y) with y = 1, 2, 3 given by
Yix, t,y) = Ex, 1) — iH/(x, 1).

It is clear that F*# can be obtained from ¥'(x).

Under the transformations 7(a%), R(0), and L(B),¥
transforms according to (2.10)(2.12) where the
matrices M, are given by

M'- == g‘,

4.2)

4.3
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the matrices S; being given by (2.8) and constitute the
irreducible representation of the generators of the
rotation group corresponding to vector rotations.
The matrices N; are given by

N, = iS;. 4.4)

The matrix exp [i0 - M] = exp [i0 - 5] is simply the
matrix which gives the new components of a vector in
terms of the old components when the new frame
of reference is obtained from the old one by a rotation
described by 0.

Using the fact that (0 .8)® = 6%(8 - S) we obtain
the result
exp [0 - S] = I + i(0 - S)(sin 6/6) + (0 - S)?

X {(cos 6 — 1)/6%]. (4.5)
Defining the matrix R(8) = exp [i0 - §] we have for
the matrix elements of this matrix

[RO)],, = ., c0s 6 — 20 (cos 6 — 1)
92

+ zemeki‘;f . (46)
k

where ¢, is the usual three-index antisymmetric
symbol.
Let us define the matrix L(B) by

L(B) = exp [iB - N]. @4.7)
On using the fact that (8 - N)®* = —f%B - N) we have
L) = I + i(B - N)(sinh B/B) + (B - N)*

x [(1 — cosh §)/8%]. (4.8)
The matrix elements are given by
(L@, = 6, cosh  — ‘f’-f- (cosh f — 1)

+iSens, Sl 40)

Equations (2.10)-(2.12), which show how the wave-
function transforms under the changes of frames of
reference, take on a simpler form when we use a
vector notation for the wavefunction ¥, which up to
now we have considered a column vector. Let us
introduce the vector field W(x) whose components
are just the components of the column vector ¥,
Then under the transformation 7(a*) the new vector
field is

W(x) = ¥(x + a).

Under the rotation R(8) the new vector field is
¥'(x) = W(R(— 8)x) cos 6 — 0[0 . ¥(R(—0)x)]
cos— 1
X e
[compare (2.2)].

4.10)

[0 xﬂR(—e)xn%—f’ @.11)
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Under the transformation L(P) the new vector
field is transformed to

(x) = W(L(—B)x) cosh § — BIB - ¥(LU-R))]
x LD — g xR FRE

4.12)

Equation (4.12) is a remarkably simple expression
for the space-time Lorentz transformation for the
electromagnetic field. The use of ¥ to simplify the
transformation properties of the electromagnetic
field is discussed from a somewhat different point
of view in Ref. 7.

(b) Expansion of the Wavefunction

Let us now return (for the moment) to the column
vector notation for V. Since the matrices M, = S, are
irreducible, we do not need the label () in the
expansion of ¥ in the manner of (2.24) and (2.24a).
The components of the column vector y(u, e, p, 4)
are obtained from (2.23), (4.7), and (4.9). Our result
for y is (on labeling 4 from 1 to 3)

PyPs

1
&P, A) = —| o, p)d,, — —2PA
1 |pmepd) H[w(# P)d,; o2 T

+ ie ZGYMp{l. (4.13)
k

The expansions corresponding to (2.24) and (2.24a)
takes a neater form if we use a vector notation. As
before we use W(x) for the vector constructed from
the column vector W(x). Let us construct the
vectors f(/‘, €, P), f(/‘a P) = f([,t, +1, p)5 and h(/": P) =
f*(u, —1, —p), respectively, having the components
fGu, e,p, ), f(u,p, A), and h(u, p, ). Indeed, from
(2.20) f(u, €, p), f(u, p), and h(u, p) will transform
like vector fields under rotations of the coordinate
system.

Then Eq. (2.24) becomes (on absorbing 1/u into
the measure functions)

e[

X exp {‘[P ‘X - Ew(/.l, P)I]}{w(l‘s P)f(ﬂ, €, P)

W(x) =

(B (s, & p)] — ielp x f(u, €, pn}
(4.14)

wcu)+

? H. E. Moses, Nuovo Cimento, Suppl. 7 (1), 1 (1958).
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ei[n-x—m(ﬂ.p)t}{ w(," p)f(pt, P)

P £, p)] — ilp x T, p)]}

o(u, p) + p

+ [ang f """’H"“”’{w(p, Db, B)
—_ h* — b*(u,
- p) 5 0 ) — i X G p)]}

(4.15)

In deriving (4.15) we have used the fact that the
matrix U whose elements appear in (2.26) can be
chosen to be the identity, since §; =

(c) Generalization to Complex Tensors

Up to now we have considered only real tensors
Fe¢_ However, the generalization to complex tensors
is not difficult. Let us write

F* = F% + iF%, (4.16)
where F¥ and F{¥ are the real and imaginary parts
of the tensor F*), We can then construct the two
3-component column vectors ¥p(x) and ¥y(x) from
F%¥ and F, respectively, in the same way that ¥ was
constructed from the real tensor F*f. Then the ¥
wavefunction is the six-component column vector
formed by placing the three component column
vector ¥ above W',. It is clear that the complex
tensor F* can be reconstructed from the column
vector ¥,

It is further clear that the matrices M, and N,
appear in completely reduced form in which the
three-by-three reduced matrices are identical to those
for the real tensor F*# given by (4.3) and (4.4). It is
further clear that the new function ¥ can be expanded
precisely as the ¥ for the real tensor. Four irreducible
representations of the inhomogeneous Lorentz group
appear in the expansion for each value of x4 because
now the index (r) can take on two values with two
signs for each value of (r). We refrain from details for
the sake of brevity and because of the obviousness
of the procedure.

We also postpone to later sections the discussion
of how certain wave equations affect the irreducible
representations which appear in V.

5. WAVEFUNCTIONS WHICH TRANSFORM
AS A FOUR-VECTOR

In the present section we show that the relativistic
decomposition of the vector potential simplifies the
discussion of such potentials considerably. We show
that generally we have a perfectly well-defined theory
which involves particles with two spins. When the
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Lorentz condition is imposed, the representatives
which correspond to one of the spins is identically
zero. The usual difficulties which appear in the
canonical formalism (see, e.g., Ref. 6) in which
redundant variables appear are resolved in a very
simple manner.

The results in this paper anticipate to some extent
the results for the mass zero case where the vector
potential with the Lorentz condition is interpreted as
being an electromagnetic vector potential. (See Ref. 8.)
There are, however, also some essential differences.

(a) Transformation Properties of the Wavefunction

We now discuss wavefunctions which transform
like the four-vector x = {x*} under the transformations
of the homogeneous Lorentz group. Accordingly we
label the index y of the components W(x, ¢, y) of the
column vector ¥(x) by taking v to have the values
y =0, 1, 2, 3. Then if 47(x, ) are the components of
of a vector field which transforms as x?, we make the
identification

Y(x, t, y) = A'(x, 1). (5.1)

In the present section we use A’ instead of ¥ in
order to be closer to more conventional notation,

It is clear that for the present case

Mz = Mi’
N, =N,
where M, and N, are given by (2.5) and (2.6).

(5.2)

(b) Reduction of the Wavefunction

From (2.9) we see that M, reduces to two irreducible
representations of the rotation group, namely, the
scalar representation and the vector representation.
Thus the label (r) takes on two values which we call
0 and 1 for the scalar and vector representations,
respectively.

Furthermore,
exp [ip - ] = I + i(B - N)(sinh £/B) + (B - N)*

x [(1 — cosh B)/B%]. (5.3)
It is perhaps interesting to note that (5.3) has the same
form as (4.8).

It is now a straightforward matter to apply the
algorithm to find the transformation functions x4,
For r = 0, the variable 4 takes on only one value.
Hence it need not be indicated.

Then x(y | 4, €, p) is given by

Py I . €, ) = o(u, p)lp (5.4)
290 | e p) = (Jwp, (r=1,2,3).

For r = 1 the variable 4 can take on three values

which we take to be 1, 2, 3.

® H. E. Moses, Nuovo Cimento 42, 757 (1966).
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Then

200 | 1, 6,0, 1) = (/wpa,
1

(1) a DyDs,

X (Vlﬂ,G’P’ A)=_|:l‘6).+ ——-} (5.5)

pl " o p) +p
(y=1,2,3).

The expansions (2.24) and (2.24a) take a particularly
simple form when a vector notation is used. Accord-
ingly let us define the scalar ¥(x, ¢) by

V(x, t) = A%x, 1) (5.6)
and the vector A(x, £) by
Ax, ) = {d(x, 1), 42(x, 1), 43(x, )}, (5.7)

It is clear that f'®(u, ¢, p) transforms as a scalar
under rotations. Let us also introduce the vectors

f8(u, €, p), T8 (u, p), KV (4, p) by

fO(u, ¢, p) = {f(l)(lus &P, 1),f‘1’(y, &P, 2),
O, & p, 3)},
£V, p) = {f P, p, 1), f O, p, 2), f P (u, B, 3)},
W (u, p) = (AV(u, p, 1), KV(u, B, 2), KV(u, P, 3)}-

(5.8

Then, on absorbing the factor 1/u into the measure
functions, Eq. (2.24) becomes the equations

UCDED) f MOy, ¢) f w(‘;" e

ilp-x—ew(p,n)t]

x ol f O, 6 p) + 3 f AMD(y, €) f dp
€ o(u, p)
% 6ei[l)-x-—-!o)(ll.il)t][p . f(l)(‘u, e, P)]’
Ax.f) =3 f AM©(u, ) f
(%, p)
X €ez[p -x—€w{y,p)t] f(o)(‘u, €, p)

+ 3o 2

x | ufVu, ¢, p) + —2——
{ oy, p) + p

(5.9)

ei[n-x—ém(um)t]

o 1 <, p)]}.

(5.9a)
Equation (2.24a) becomes

V(x, f) = f AM© () 2B w(” =
X e:[p -x—o{y, p)t]w(lu P)fw)(.uﬁ p)

+de(°)(,u)f ") —ilv-x—w(u,p)t]w([u’ p)hw)*(/t, P

e [0

d
dN(l) P —i[p-x—wln,p)t] .h(l)* , ,
+ f () f D" lp (u (P)]O)
5.1

ei[n‘x—w(p,p)t][p . f(l)(,u, P)]
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Ax, 1) =fdM(°’(/4) f B itox-otniap 0y, p)
w(, p)

+fanow [t

+ famego [

x (O, p) + —E—
{ w(p, p) +

[

p . h(l)* )
o, p) + (e ®, p)]}
(5.10a)

We prefer to work with Eqs. (5.10) rather than
(5.9) because only positive energy representatives
appear in (5.10).

e—i[p-x—m(u,p)t]Ph(O) *(,u" P)

ei[p‘x—w(p,ﬂ)t]

p - 19, p)]}

e—i[p-x———w(u,p)t]

X {Mh(l)*(,u, P+

(c) Reality Condition

It is readily seen that a necessary and sufficient
condition that V(x, ) and A(x, ¢) be real is that

dM(O)(‘u)f(O)(‘u, P) - dN(O)('u)h(O)(‘u, P),
dAM (D (u, p) = dNV(u)h(u, p).

(d) Relation to the Real Antisymmetric Tensor

In the previous section we have expanded the real
antisymmetric tensor F* in terms of spin 1 repre-
sentatives f(u, p) and h(u, p) [see Eq. (4.15)]. Let us
now consider the real tensor F*# when it is obtained
from the real four-vector A* through

F* = (94%ox,) — (BA%axp).
The following theorem is easily proved:

(5.11)

(5.12)

Theorem I: A necessary and sufficient condition
for (5.12) to hold is that

M), B) = AN(u)b(, B) = i AMD()Du, p).
(5.13)

Of course, this theorem restricts considerably the
expansion (4.15) for antisymmetric tensors. This
theorem also enables one to construct a real four-
vector A* from F* when it is known that this tensor
is obtained from a four-vector through (5.12).

It is very interesting to note that the scalar wave-
functions f© and A" play no role in the relationship
between the tensor and the four-vector other than
providing a “constant of integration” in the construc-
tion of the four-vector from the tensor. It is to be
noted that we have not used the Lorentz condition
to make this statement true.

The extension of the above results to complex
tensors derived from complex four-vectors is straight-

H. E. MOSES

forward but for the sake of brevity we do not go into
the matter.
(e) Lorentz Condition
The following theorem can be proved by sub-
stituting (5.10) in an appropriate fashion:

Theorem 2: A necessary and sufficient condition
for the Lorentz condition
3 a A%
> =

a=0 ax‘ -

S, ) = K9, p) = 0.

Thus the Lorentz condition is entirely equivalent
to stating that there are no particles of spin zero in the
expansion for A% Thus expansion (5.10) considerably
simplifies the discussion of the effect of the Lorentz
condition on four-vectors.

(f) Wave Equation
The following statements are easily proved to be
true using the techniques which were used for
analogous theorems for the scalar wavefunctions.
A necessary and sufficient condition that the com-
ponents of a four-vector satisfy the wave equation

(0%0* — V* + mHAY(x,1) = 0 (5.15)
AM () = CO¥u — m) dp,
AN (u) = D9D(p — m)ydu (i=0,1), (5.16)
where C¥ and D' are positive real constants.
Thus if the four-vector satisfies the wave equation

(5.15), the most general expansion in terms of positive
energy wavefunctions is given by

V(X, t) = C(O)J‘dpeiln-x—w(a)t!f(o)(l.)

0 (5.14)
is that

is that

+ D@ f dpeiTrr—atrI O (p)

ﬂ ilp-x—a(p)tlf, . £(1)
o) [p - 1(p)]

+ pW j _dp_ oMy . KO¥@)]  (5.17)
o(p)

+ C(l)

AP ipx-atmi o)
o(2) p%(p)

+ DO f _d(l;_) Irx—ololly 0

«

Ax, f) = C®

+ cw dp gx—oloi

o(p)

x mf(l) + P

{ ®+ -

+ DW f dp e—ilrx—als)
o(p)

% {mh‘”*(p) + @E;_;‘ I»- h‘l"*(p)]}, (5.17a)

- f‘“(p)l}
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where f©(p) = fO(m, p), KO(p) = h®(m, p),{P(p) =
f(m, p), hV(p) = h'V(m, p), and w(p) = w(m, p).

If the four-vector A% is to be real, we have the
requirement that

COf©)(p) = DOAO(p),

COfM)(p) = DWhA(p),
The representations given by 4@ and h'" are thereby
expressed in terms of those given by f(® and 0,

If the Lorentz condition (5.13) is to be satisfied we
must have

(5.18)

SO@) = K%p) = 0. (5.19)

(g) Determination of the Constants C) and D¥)
through the Use of the Canonical Formalism

We assume that the four-vector A® satisfies the
wave equation. By identifying the total energy as
obtained from the Hamiltonian density with the
expectation value of the energy when only one mode
or wavefunction is not identically zero we can obtain
the constants C'! and D', as explained in some
detail in Sec. 3. Let us first take A* to be complex.
Then for the cases (I)f® = A® =h®W =0 and
D f©@ = 4'® = {0 = 0 we use the obvious Hamil-
tonian density for a complex four-vector

H(x) = 3 {4°A} + VA*-VA; + m*4°4}} (5.20)

to obtain positive energies. [We have suppressed the
appearance of the time variable in H(x).] For the
Cases (III) A©® =f0 =hV =0 and (IV) fO =
f =hW =0, we find that to get positive total
energies we must use —H(x) as the Hamiltonian
density. With these choices for Hamiltonian density
we obtain the following values for Ct? and D'9:

CY = pW = (2)¥(2m)t. (5.21)

On using these constants we have

f H(x) dx = f fV%(p) . f(p) dp, for Case I

=Jh“’*(p) -hV(p) dp, for Casell

= —‘[lfw’(p)l2 dp, for Case I11
= —flh‘“’(p)l2 dp, for Case IV.
(5.22)

For real fields we replace DWhV(p) by CVfV(p)
and D'9A(p) by C@f®(p) in the expansion (5.17) in
accordance with the discussion leading to (5.18).
Then we need find only C'® and C¥’, The Hamiltonian
density is taken to be 3 H(x) for the case thatf®(p) = 0
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and —}H(x) for the case that f)(p) = 0. On using
the requirement that the energy of the field equals the
right-hand side of the first and third of Egs. (5.22)
for the two cases, respectively, we find that C* and
CW are also given by (5.21).

(b) Definition of Inner Product of Vector
Wavefunctions

We now define the inner product of two complex
vector wavefunctions such that the Hermiticity of the
infinitesimal generators in configuration space is
assured and such that the inner product is invariant
under all the transformations of the proper, inhomo-
geneous Lorentz group. Let A* and A} be the com-
ponents of two complex four-vectors which satisfy
the wave equation. Then following the discussion of
the inner product given for (2.25) we define the inner
product (4,, A) by

(A;, 4) = [ L2 0%(p) O(p) + j KO (p)

()

dp 1 (1)
+[ L) 1)

+ [ w00, (5.23)
where the subscnpt 1 on the representative indicates
that it appears in the expansion (5.17) for A5.

For real fields the inner product is defined as above
but with the terms involving A and h® omitted.

(i) Second Quantization without Lorentz Condition

We now second quantize the complex vector field
without making use of the Lorentz condition. We
thereby obtain a relativistic two-spin theory with a
positive definite Hamiltonian and a positive definite
norm for the Hilbert space.

Let us then replace the representatives f“X(p) and
hO(p) by destruction operators and f@*(p) and
h©*(p) by creation operators. Likewise we replace
the components f™(p, 1) and AV(p, 1) of the spin 1
representative vectors f)(p) and h'*(p), respectively,
by destruction operators and their complex conjugates
by creation operators. Thus four particles are
involved—a particle, antiparticle pair of spin zero
and a particle, antiparticle pair of spin 1.

We assume Bose statistics and require that all
commutators vanish except the following:

LFO@), fO*()] = w(p)d(p — P),
(1), K*(p)] = w(p)d(p — P),
O, 1), f7*@, )] = o(p)op — P)B52»
[(h(p, 4), BV*(@', 1)) = w(p)O(p — P)Br.s:-

(5.29)



1148

We thus regard the components 4* as given by (5.17)
with C¥ and D' given by (5.21) as an operator and
denote the Hermitian adjoint of this operator by A**.
We readily derive the following commutation rules
for the components of the vector potential:

[4%(x, 1), AP(x', )] = 0,
[A%(x, 1), APHX', 1)]

-1 [2 ?
m® [ 9x,0x,
where D(x, t) is defined by (3.21).

We now show that the theory is relativistically
invariant. Let 4 be any one of the operators H, Z,,
g, & acting on the representatives corresponding to
the irreducible representations of the inhomogeneous
Lorentz group as in (2.16). Let us define the operators

Afoxp), Ah‘“’(p) AfV(p, 2), AhV(p, 2) as the operators
formed when 4 acts on p and 1 as though f*%(p),
HO(p), fA(p, 1), AV(p, A) were representatives instead
of destruction operators. For each operator 4 we
define the second-quantized operator

(41 = [ @A) + [ 2 AN E)
+ 2[5 DA e

(5.25)
— ng“”:l D(x —x',t —t),

+Ef dp h(l)*(p A)Ahm(p 2.

The operators [P,-], [H], [J;], and [&,] constitute a
representation of the infinitesimal generators of the
inhomogeneous Lorentz group. The operators [P;]
are the components of linear momentum, [H] is the
Hamiltonian, and [J;] and [§,] are the components of
angular momentum.

We now show that the second-quantized theory is
invariant under all the transformations of the inhomo-
geneous Lorentz group.

Let A(x) denote the column vector whose com-
ponents are A%x,?). Then under the translation
T(a®) the set of operators called A(x) transform to
A’(x) where

A'(x) = A(x + a)

= exp {—i 3 a’[P,]}A(x) exp {i X a*[P.]}.
: NN 1)
Equation (5.27) is to be regarded as true component
by component as are the equations to follow.

Under the rotation R(8) the new set of operators

is given by
A'(x) = R(O)A(R(—6)x)
= exp {—i0 - [J}A(x) exp {i0 - [J]}. (5.28)

(5.26)

H. E. MOSES

In Eq. (5.28) R(6) is the matrix defined by the four-
vector rotation (2.2b).

Under the space-time transformation L() the new
set of operators is given by

A'(x) = LBAL(—PB)x) = exp {—if - [F]}A(x)
x exp {iB - [3]}. (5.29)

In (5.29) L(B) is the matrix defined by the Lorentz
transformation (2.3b).

To second quantize real fields we identify the
operators A‘%(p) with f©(p) and A'Y(p, 1) with
SY(p, A) in the expansion (5.17). Thus A(x) is a set of
Hermitian operators. We need only consider com-
mutation rules

[fm),f @] = o(p)é@ — p),
f P, D), fO*P', A)] = o(p)é — p)0,,, (5.30)
fO@).f M0, D] = [0,/ V0, )] = 0.

The commutation rules for the operators A* are

_mz aﬂ]
xpx, | E
X Dx—x',t—-1).

[4%(x, 1), A”(x' )]
- (z/mz)[

(5.31)

Second-quantized operators are introduced as in
(5.26) with terms containing A'9(p) and A(p, 1)
stricken out. Equations (5.27) through (5.29) hold.

(i) Second Quantization with Lorentz Condition

When the Lorentz condition is imposed we replace
A'®(p) and f (p) in the expansion (5.17) by zero. For
the complex field f*)(p, 4) and A)(p, 1) satisfy the
same commutation rules (5.24) as before. The com-
mutation rules for the components of the vector
potential are

[4%(x, 1), AA(x', 1)] = 0,
[4%(x, 1), AP*(x', 1')] (5.32)
= —i[g¥ — (1/m*)(@*[ox,0xp)]D(x — X', t — '),

which are identical to the usual commutation rules
(see Ref. 5). Hence our theory is equivalent to the
usual one except that it is much easier to handle the
Lorentz condition and is relativistic,

Second-quantized operators are introduced as in
(5.26) except that terms containing 4 and f*® do not
appear. Equations (5.27)—(5.29) continue to hold for
transformations of the wavefunction under relativistic
changes of frame.

To obtain the second-quantized theory of real fields
we identify A®*)(p, 2) with fM(p, 1) in the expansion
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(5.17). The commutation rules for the fields are
[4%(x, 1), A%(x’, 1]
= —i[g¥ — (1/m*0%/0x,0xp)]D(x — X', t — 1').
(5.33)

In second quantizing operators only the term involving
fU(p, 2) is used in the definition (5.26). The trans-
formation equations (5.27)—(5.29) continue to hold.

6. WAVEFUNCTIONS WHICH TRANSFORM
LIKE DIRAC SPINORS

We now reduce wavefunctions which transform
like Dirac spinors. In a manner similar to our treat-
ment of scalar wavefunctions and wavefunctions
which transform as a vector, we first reduce spinor
wavefunctions generally and then require that they
satisfy the Dirac equation to eliminate some of the
representations which appear. We then relate the
solutions of the Dirac equation to the canonical
formalism and second quantize the theory. We thus
show that the usual second-quantization theory is
recovered. However, the modes which we introduce
transform in a simple manner in contrast to the
modes which are usually introduced.

(a) Pauli Matrices, Dirac Matrices, Dirac
Hamiltonian, and Dirac Equation
We wish first to introduce the Pauli and Dirac
matrices in standard form. Accordingly we take the
Pauli matrices o;(i =1,2,3) to be given in the
conventional form

0 1 0 —i 1 0
om0 op == T == )
6.1)
We also define the Dirac matrices y* (x = 0, 1, 2, 3)in

a conventional way as a 4-by-4 matrix written as a two-
by-two matrix with two-by-two matrix components as

follows
_ - = ] ,
7 Yo 0, —1I,

0. o;
Y=y =—i ‘).
—0"- 02

In (6.2) 0, is the two-by-two zero matrix and I, is the
two-by-two identity matrix. Also one should not
confuse i = (—1)* with the subscript label i.

The Dirac-Hamiltonian H is given by

H=iy(y -V +m). 6.3)

The Dirac wavefunction ¥'(x) is a column vector with
components ¥(x, ¢, ) in accordance with our usual

(6.2)
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notation, where the discrete variable » runs from 1
to 4. (The discrete variable y should not be confused
with the Dirac matrices ¥* or y, which is always
associated with a superscript or subscript.)

Of course, the Dirac equation is

HY(x) = i(0/0)¥ (x). 6.4)

(b) Transformation Properties of the Wavefunction

The requirement that the wave equation (6.4) be
invariant leads to the transformation properties of
the wavefunction W(x). For the time being we assume
that the wavefunction does not necessarily satisfy
(6.4) but that it has the same transformation prop-
erties required of the solution of (6.4). These trans-
formation properties are summarized by giving the
matrices M; and N; explicitly. These matrices are
given in terms of the Pauli matrices as follows:

M, = (%Uc 0, )’
0, 1o,

N.'=( 0, —%}ia,-).
—1io; 0,

We can see how ¥(x) transforms under the Lorentz
transformations T(a®), R(0), and L(8) by using
(2.10)(2.12) with

exp {i0 - M] = I'cos $6 + 2i(6 - M)(sin $6/6),
exp [if - N] = I cosh 48 + 2i(B - N)(sinh 5/8).
In (6.6), I is the four-by-four identity matrix.

(6.5)

(6.6)

(c) Transformation to Irreducible Representations

From the first of Egs. (6.5) we see that the label (r)
takes on two values which we can take to be 1 and 2.
For each value of (r) the label A takes on two values
which we also take to be 1 and 2. We then can
expand ¥(x) as in (2.24) and (2.24a). On using (2.23)
and the second of equations (6.6) we obtain as the
components of the transformation vector x'(u, €, p, 4)
xu)(/"s €, P, 1)

[o(z, p) + ult
Qut °
— [0, p) + ul-¥epy
(o, p) + plte(p, + ip2)
10, € p,2) 6.7
0
[exus, p) + plt
— Qu? o, p) + B

lw(u, p) + pl-te(p, — ipy)
—{o{ps, p) + ultep,
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%@ p 1)
[e(g, p) + ul-tep,
[o(u, p) + pl te(p, + ipy)
= 2 ,
@t [w(z, p) + pl?
0
12, €, p,2) (6.8)
[eo(, P) + ll]—if(Pl — ipy)

—folu, p) + ﬂ]_%epa
0
[w(s, p) + pl}

In the expansion (2.24a) we define, as usual,
17, p, ) by

x(ﬂ(l‘a | j') = X")(ﬂa +1, P, j') (69)

The matrix U whose elements are used in (2.26) is

given by
01
U= .
[ o
Then the transformation column vectors {"(u, p, 1),
which are used in (2.24a), are given by
LN, p, 1)

0
[(, p) + plt
=Quyt
N ) + ul s + i)
—[o(x, p) + 1 2ps

= @u?

(6.10)

{1, p,2)
~[w(g, P) +

= (u)*
“ —[o(u, p) + 1 2ps
-[w(/t p) + pl- ir(1’1 — ips)

M, p, 1) (6.11)

[w(u, p) + ul~ i(]’1 + ipg)
P —[w(u, p) + ul¥p,
[w(u, p) + p1*

(%, p,2)
— [, p) + ultp, )

—[wly, p) + pI- lr(Pl — ip)

=
2074 —[o(u, P) + plt

H. E. MOSES

As in our treatments of scalar and vector wave-
functions we work with (2.24a) instead of (2.24) in
the next sections.

(d) Wave Equation

We now require the wavefunction ¥'(x) to satisfy
the Dirac equation (6.4). Since the wavefunctions
which satisfy (6.4) also satisfy the wave equation

[(@2/0r3) — V2 + m?¥(x) = O, (6.12)
it follows in precisely the same fashion as for the

scalar and vector wave equations that only the mass
m appears in the expansion (2.24a), that is,

M) = CO8(u — m) d,
AN(u) = DVé(u — m),

where C) and D' are positive constants. However,
this restriction on the representations is not the only
one for wavefunctions which satisfy (6.4). If we
substitute the expansion (2.22a) into (6.4) and use
(6.7), (6.8), (6.9), (6.11), and (6.13) we find that we
must have

f®¥(m,p, ) = hV(m,p, 1) =0. 6.14)

Thus wavefunctions which transform like Dirac
spinors of one mass are more general than Dirac
spinors which satisfy the Dirac equation.

In what follows we consider only solutions of the
Dirac equations. For simplicity of notation we write

f(l)(ms P, 2.) =f(P, A),

(6.13)

HO(m, p, 2) = h(p, 3. 619
cw =,
oo (6.16)

(e) Connection with the Canonical Formalism.
Definition of Inner Product

We now find the constants C and D by identifying
the total energy of the field as obtained from the
canonical formalism with the expectation value of the
energy in terms of the representatives corresponding
to the irreducible representations.

Let us first set A(p, A) = 0 and take the usual
expression for the Hamiltonian density, namely

Hx) =VI(0)HY(x) = VTV (), (6.17)

where H'W(x) is the column vector obtained by oper-
ating with the Hamiltonian H on the vector ¥'(x) and
where ¥'T is the complex conjugate of the row vector
formed from V. The first equation of (6.17) is thus
meant to represent a bilinear form. We require that

| f H@)dx =3 f If@ DlPdp.  (6.18)
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We then set f(p, 4) = O and using —H(x) as the
Hamiltonian density require that

- [He ax = 3 [1n. A dp.

In this way we obtain the following results for C
and D.

6.19)

C = D = [m/Qn)*]. (6.20)

It is not difficult to define an inner product of two

spinors which satisfy the Dirac equation. In complete

analogy to the scalar and vector wavefunctions we
define the inner product (;,¥) by

_v(_9
(‘FI’IF)*gfw(m, P

X [f1 @ VS, A + h*(, Dy, A (6.21)
(f) Second Quantization

We now assume that the spinor wavefunction
satisfies the Dirac equation and that C and D are
given by (6.20). To second quantize the theory we now
regard f(p, A) and A(p, 1) as destruction operators and
f*(p, 4) and h*(p, 1) as creation operators which
satisfy the following fermion anticommutation rules:

/@ D, /@, 1)) = [, 2), b, 1)), = O,
L@ ), h@', )]y = [f @ A, 2@, 1], =0,
@, D,/*@, )], = [, D, *@, D),
= w(m, p)o@ — p)8,,. (6:22)

On using the expansion corresponding to (2.24a) for
the operator ¥(x, 7, y) and the Hermitian adjoint
operator V*(x, ¢, y) we obtain the usual commutation
rules for these spinor components

[\F(X, t’ ’Y),IF(X', t’a '}”)]4- = 07
[\F(X, ta ?),‘F*(x’, t,5 ‘J/)]+
= i[(1/i)@/on] — H}, . D(x — x', t — t').

The subscript on the square bracket labels matrix
elements in the usual fashion. 7 is the identity operator
and H is the Hamiltonian (6.3) which operates on
the x variable of the invariant function.

For every infinitesimal generator 4 of the inhomo-
geneous Lorentz group we can introduce a second-
quantized operator [4] in a manner similar to that for
the vector and scalar wavefunctions. These second-
quantized operators also constitute a representation
of the infinitesimal generators of the inhomogeneous
Lorentz group. In particular [H] is the second-
quantized energy which is positive definite. The
discussion of the invariance of the second-quantized
theory is close to that for the scalar and vector wave
equations and we therefore do not give it for the sake
of brevity. ' '

(6.23)
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7. A MULTIPLE SPIN DIRAC EQUATION

There have been several generalizations of the
Dirac equation. One of the best known which
describes particles of higher spin is given in Ref. 9.
Such equations are shown to give rise to wavefunctions
which transform according to irreducible repre-
sentations of the inhomogeneous Lorentz group. (It
might be mentioned that, using the techniques of the
present paper, the representations given in Ref. 9 can
be converted into the Foldy—Shirokov representations.)

In the present section, however, we consider a
generalization of the Dirac equation given in Ref. 10.
In Ref. 10 it is required that the generalized Dirac
Hamiltonian have the form (6.3) where the gamma
matrices satisfy the usual Dirac rules. One further
requires that the matrices * and the matrices M,
and N, constitute an irreducible set. All such irre-
ducible sets are then found.

It is shown that in general the solutions of the
generalized Dirac equation correspond to multiple
spin particles. However, by choosing the repre-
sentation properly, single spin theories are obtained
by setting some of the components of the spinor
wavefunction equal to zero.

In the present section we consider the simplest
generalized Dirac equation after the original Dirac
equation itself. We first reduce the wavefunction
which transforms according to the rules of Ref. 10,
even when the wavefunction does not satisfy the Dirac
equation. It may be seen that our knowledge of the
transformation properties of scalar, electromagnetic,
and vector wavefunctions enables us to reduce the
wavefunction immediately.

We then require that the wavefunction satisfy the
wave equation and thereby eliminate some of the
irreducible representations which appear.

We find that we obtain essentially the same two-
spin theory that we obtained for the vector wave-
function which satisfies the second-order wave
equation when the Lorentz condition is not imposed.
A single-spin theory is then obtained by setting the
wavefunction corresponding to a scalar equal to zero.

(a) Matrices for the Generalized Dirac Equation.
Reduction of the Wavefunction

In our example the spinor wavefunction ¥(x) is a
column vector with eight components. The y matrices
and the matrices M, and N, are all eight-by-eight
matrices. We rewrite the results of Ref. 9 slightly to
conform to the notation of the present paper.

? V. Bargmann and E. P. Wigner, Proc. Natl. Acad. Sci. U.S. 34,
211 (1948). .
10 3. S. Lomont and H. E. Moses, Phys. Rev. 118, 337 (1960).
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The y matrices are given by

Yo

8!
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